期刊文献+

基于小波变换的例外挖掘

Wavlet Transform-based Outlier Mining
下载PDF
导出
摘要 1引言例外常常是指数据集中远远偏离其它对象的那些小比例对象,在大多数研究中作为噪声被遗弃.但是在一些应用中,例外的检测能为我们提供比较重要的信息,使我们发现一些真实而又出乎预料的知识,具有很高的实用价值,如文[1]挖掘了时序数据中的例外,从而在存储容量相同的情况下,可以获得对原始序列更精确的表示. In real project, the useful signal usually shows as low-frequency signal, but noise (outlier) shows as high-frequency signal. Wavlet transform can maps 1-D signal into a 2-D time-scale plane,and the localization of signal is described in different scales,so it is suit to detect instantaneous strange embedded in normal signal. The notion of TS (ω)outlier and CL(δ)outlier,a kind of waylet transform-based cutler mining approach are introduced. Experiments results show its efficiency and effectiveness.
出处 《计算机科学》 CSCD 北大核心 2002年第2期127-129,共3页 Computer Science
基金 云南省自然科学基金(1999F0015M)
关键词 数据库 数据挖掘 时序数据 小波变换 例外挖掘 Wavlet transform,Outlier mining,Time series outlier,Cluster-based outlier
  • 相关文献

参考文献7

  • 1Jagadish H V,et al. Mining. Deviants in a Time Series Database.In: Proc. of the 25th VLDB Conf. Edinburgh, Scotland, 1999. 102~113
  • 2Knorr E,Ng R T. Algorithms for Mining Distance Based Outliers in Large Databases. In: Proc. of the 2 4th VLDB Conf. New York:USA,1998. 392~403
  • 3Knorr E M,Ng R T. Finding Intentional Knowledge of DistanceBased Outliers. In:Proc. of the 25th VLDB Conf. Edinburgh:Scotland, 1999. 211~222
  • 4Sheikholeslami G,et al. WaveCluster :A Multi-Resolution Clustering Approach for Very Large Spatial Databases. In: Proc. of the 24th VLDB Conf. New York: USA, 1998. 428~439
  • 5胡昌华 张军波.基于MATLAB的系统分析与设计--小波分析[M].西安:西安电子科技大学出版社,2000..
  • 6Arning A.et aL A Linear Method for Deviation Detection in Large Databases.KDD..995
  • 7史东辉,蔡庆生,倪志伟,张春阳.基于规则的分类数据离群挖掘方法研究[J].计算机研究与发展,2000,37(9):1094-1100. 被引量:22

二级参考文献9

  • 11,Knorr E, Ng R. Algorithms for mining distance-based outliers in large datasets. In: Proc of the 24th VLDB Conf. New York, 1998. 392~403
  • 22,Barnett V, Lewis T. Outliers in Statistical Data. New York: John Wiley & Sons,1994
  • 33,Knorr E, Ng R. A unified approach for mining outliers: Properties and computation. In: Proc of 1997 Int'l Conf on Knowledge Discovery and Data Mining( KDD'97). Newport Beach, California, 1997. 219~222
  • 44,Knorr E, Ng R. Finding intensional knowledge of distance-based. In: P roc of the 25th VLDB Conf. Edinburgh, Scotland, 1999. 211~222
  • 55,Breuning M, Kriegel H, Ng R. OPTICS-OF: Identifying local outliers. I n: Proc of the 3rd European Conf on Principles and Practice of Knowledge Discove ry in Databases(PKDD'99). Prague, 1999. 262~270
  • 66,Arning A, Agrawal R, Raghavan P. A linear method for deviation in larg e database. In: Proc of Int'l Conf on Data Mining and Knowledge Discovery(KDD'9 6). Portland, 1996. 164~169
  • 77,Guha S, Rastogi R, Shim K. Rock: A robust clustering algorithm for cat egorical attributes. In: Proc of 1999 Int'l Conf on Data Engineering. Sydney, 19 99. 512~521
  • 88,Agrawal R, Srikant R. Fast algorithms for mining association rules. I n: Proc of 1994 Int'l Conf on Very Large Data Bases (VLDB94). Santiage, Chile, 1 994. 487~499
  • 99,Agrawal R, Imielinski T, Swami A. Mining association rules between set s of items in large databases. In: Proc of ACM SIGMOD Conf on Management of Data (AIGMOD'93). Washington, 1993. 207~216

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部