期刊文献+

静态灰度图像中的人脸检测方法综述 被引量:4

Survey on Face Detection Methods in Gray-level Still Images
下载PDF
导出
摘要 1.引言在日常生活中,人的脸部特征给我们提供了大量丰富的信息.对于人脸的研究因其在身份验证、档案管理和可视化通讯等方面的巨大应用前景,备受研究者关注,成为一个非常活跃的研究领域.很多人脸研究工作都是假定图像中的人脸已经被检测和定位.而为了设计出自动人脸识别系统,快速而高效地检测人脸是需要解决的一个关键问题. In recent twenty years,the technique of face detection and face recognition,as one of the important research area of computer vision and image understanding,attracts more and more attention. In general,face detection in gray-level still images is more difficult than that in color images. Therefore this paper briefly surveys this area and indicates some issues for exploration.
出处 《计算机科学》 CSCD 北大核心 2002年第2期134-137,110,共5页 Computer Science
基金 国家自然科学基金 江苏省自然科学基金
关键词 静态灰度图像 人脸检测 图像处理 计算机 图像识别 Face detection, Eigenface, Neural network, Feature extraction, Deformable template
  • 相关文献

参考文献20

  • 1Yang M-H, Ahuja N, Kriegman D. A survey on face detection methods. http : //vision. ai. uiuc. edu/mhyang/papers/survey. ps.gz.
  • 2Yang M-H,Ahuja N. Detecting human faces in color images. In:Proc. of the Intl. Conf. on Image Processing,1998. 127~130
  • 3Sung K-K, Poggio T. Example-based learning for view-based human face detection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998,20(1 ): 39 ~ 51
  • 4Turk M,Pentland A. Eigenfaces for recognition. Journal of cognitive neuroscience, 1991,3(1 ): 71 ~86
  • 5Pentland A, Moghaddam B, Starner T. View-based and modular eigenspaces for face recognition. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Seattle, WA, 1994.21~23
  • 6Moghaddam B,Pentland A. Face recognition using view-based and modular eigenspaces. In: Proc. of SPIE 2257,1994. 12~21
  • 7Rowley H-A,Baluja S,Kanade T. Neural network-based face detection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998,20(1) :23~38
  • 8Rowley H-A,Baluja S, Kanade T. Rotation invariant neural network-based face detection. In: Proc. of the IEEE Intl. Conf. on Computer Vision and Pattern Recognition, 1998. 38~44
  • 9Moghaddam B,Pentland A. A subspace method for maximum likelihood target detection. In: Proc. of the IEEE Intl. Conf. on Image Processing, 1995,3:512~515
  • 10Moghaddam B, Pentland A. Probabilistic visual learning for object representation. IEEE Trans. on pattern analysis and machine intelligence, 1997,19(7): 696~ 710

同被引文献6

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部