期刊文献+

基于混沌的通信系统中的信道均衡

Channel Equalization in Chaos-based Communication Systems
下载PDF
导出
摘要 1 引言由于Pecora和Carroll开拓性的研究[1](两个耦合的混沌系统可能实现同步,从而确定了基于混沌的通信中达到相干检波的可能性),基于混沌的通信的研究己取得迅速进展,业已提出了若干概念性的通信方法,诸如混沌遮掩、混沌相移键控[2]等.然而,这些通信系统,特别是使用相干检波类型的系统的性能要受到带宽限制、失真和噪声之类的信道物理特性的影响[3].为了让基于混沌的通信系统运行良好,信道的影响必须最小化,从而使接收机能够准确地恢复消息信号.本文的目的在于为实际通信环境下的基于混沌的通信系统设计信道均衡器. The performance of chaos-based communication systems is greatly affected by non-ideal channel characteristics such as bandwidth limitation, distortion and additive noise. Systems that rely on coherent detection methods are particularly vulnerable because the process of regenerating the chaos basis signals in the detector involves a rather fragile process known as 'chaos synchronisation'. If channel effects can be minimized, the performance of chaos-based communication systems can be enhanced. In this paper, we study the equalization of the channel for chaotic communication systems. A channel equalizer is designed and realized by a modified recurrent neural network(RNN) for eliminating channel distortions. Results from computer simulations demonstrate the effectiveness of the equalizer as applied to a chaotic communication system.
出处 《计算机科学》 CSCD 北大核心 2002年第3期59-62,共4页 Computer Science
基金 重庆市应用基础研究基金
关键词 通信系统 信道均衡 混沌 噪声 Chaos communication,Channel effects,Channel equalization,Recurrent neural network
  • 相关文献

参考文献9

  • 1Pecora L M,Carroll T L.Synchronization in chaotic systems.Phys.Rev.Lett.,1990,64:821~824
  • 2Kennedy M P,Kolumbán G.Digital communication using chaos.In Controlling Chaos and Bifurcations in Engineering Systems.G.Chen (ed.),Boca Raton FL:CRC Press,2000
  • 3Johnson G A,et al.Synchronization and parameter tracking in chaotic systems.In:Proc.of the 4th Experimental Chaotic Conf.Singapore:World Scientific,1998.407~412
  • 4Proakis J G.Digital Communications,3rd Edition.New York:McGraw-Hill,1995
  • 5Takens F.Detecting strange attractors in turbulence in Dynamical Systems and Turbulence.D.Rand and I.Young (ed.),Berlin:Springer-Verlag,1981.366~381
  • 6Gencay R,Liu T.Nonlinear modeling and prediction with feedforward and recurrent networks.Physica D,1997,108:119~134
  • 7Williams R J,Zipser D.A learning algorithm for continually running fully recurrent neural networks.Neural Computation,1989,1:270~280
  • 8Haykin S.Adaptive Filter Theory,3rd Edition.NJ:Prentice Hall,1996
  • 9Qureshi S U H,Adaptive equalization.Proceedings of IEEE,1985,73:1349~1387

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部