期刊文献+

快速二变量边缘分布算法及其应用研究 被引量:2

Research on the Fast Algorithm of the Bivariate Marginal Distribution and it's Application
下载PDF
导出
摘要 1.引言 近年来,一些研究者从统计学的观点出发,将构造性模型引入进化算法的研究,形成一类基于概率分布的进化算法[1~3],文献中也称这类算法为分布评价算法(EDA),概率分析构造遗传算法(PMBGA)等名称,本文统一称之为概率分析进化算法,简称为PMEA(Evolutionary Algorithm basedon Probability Modeling).和传统的进化算法不同,PMEA的基本思想是通过从当前优选的解集合中提取信息,然后依据这些信息建立概率分布模型,再利用这种分布产生新的解,如此重复,直到满足算法的终止条件. This paper discusses the fast calculation problem of the bivariate marginal distribution algorithm (BMDA). A fast BMDA is proposed . An experimental case with the multi-constraints Knapsack NP-hard problem is solved using the algorithm. The results show that the algorithm has quick and accurate performance.
作者 杨小林
出处 《计算机科学》 CSCD 北大核心 2002年第4期69-71,共3页 Computer Science
基金 湖南省自然科学基金
关键词 背包问题 性能分析 快速二变量边缘分布算法 遗传算法 优化算法 Evolutionary algorithm,Probabilistic model,Bivariate marginal distribution,Knapsack NP-hard problem
  • 相关文献

参考文献11

  • 1Mueh1enbein H. From recombination of genes to the estimation of distributions I. Binary parameters . Parallel Problem Solving from Nature ,1996,4:178~187
  • 2Baluia S. Fast probabilistic models for combinatorial optimization. In: Proc. of the 15th National Conf. on Artificial Intelligence (AAA-98) AAA Press, 1998. 469~ 476
  • 3Pelikan M,Muehlenbein H. Marginal distributions in evolutionary algorithms . http://www-illigal. ge. uiuc. edu/- Pelikan/
  • 4林亚平.概率分析进化算法及其研究进展[J].计算机研究与发展,2001,38(1):43-49. 被引量:27
  • 5Pelikan M. The bivariate marginal distribution algorithm . Advanced in soft computing-Engineering Design and Manufacturing,London: Springer-Verlag, 1998. 521 ~ 535
  • 6Ackley D H. A Connectionist Machine for Genetic Hill climbing.Boston: Kluwer Academic, 1987
  • 7Bonet J D,et al. MIMIC :Finding Optima by Estimating Probability Densities, Advances in Neural Information Processing System.The MIT Press, Cambridge ,1997
  • 8Baluia S,Davies S. Using optimal dependency-trees for combinatorial oprimiaarion learning the structure of the search space . In:Proc of the 14th Intl. Conf. on Machine Learning . Morgan Kaufmann, 1997.30~38
  • 9Pelikan M,Goldberg D E. BOA: The Bayesian Oprimization Algorithm: [IlliGAL Report No. 98013].UIUC, IlliGAL Genetic Algorithm Aboratory, 1998
  • 10Lin F T,et al. Applying the Genetic Approach to Simulated Annealing in Solving Some NP-Hard Programs. IEEE Trans. on Systems, MAN and Cybernetics,1993, 23(6): 1752~1767

二级参考文献43

  • 1[1]Holland J H. Adaptation in Natural and Artificial Systems. Ann Arbor: Michigan Press, 1975
  • 2[2]Goldberg D E. Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley, 1989
  • 3[3]Harik G, Goldberg D E. Linkage learning. In: Belew R et al eds. Foundations of Genetic Algorithms 4. San Mateo, CA: Morgan Kaufmann, 1996
  • 4[4]Muehlenbein H. Evolutionary algorithms: Theory and applications. RWCP Theoretical Foundation GMD Laboratory, Tech Rep: GMD-AS-GA-94-02, 1994
  • 5[5]Harik G. Linkage Learning via probabilistic modeling in the ECGA. University of Illinois at Urbana-Champaign, IlliGAL Rep: 99010, 1999
  • 6[6]Goldberg D E. A meditation on the application of genetic algorithms. University of Illinois at Urbana-Champaign, IlliGAL Rep:98003, 1998
  • 7[7]Kargupta H. Revisiting GEMGA: Scalable evolutionary optimization through linkage learning. In: Proc of IEEE Int'l Conf on Evolutionary Computation. Piscataway, NJ: IEEE Press, 1998
  • 8[8]Harik G et al. The compact genetic algorithm. In: Proc of the 1998 IEEE Conference on Evolutionary Computation. Piscataway, NJ: IEEE Service Center, 1998. 523~528
  • 9[9]Pelikan M, Muehlenbein H. Marginal distributions in evolutionary algorithms. In: Proc of the Int'l Conf on Genetic Algorithm Mendel'98 Brno, 1998. 90~95
  • 10[10] Knjazew D, Goldberg D E. OMEGA-Ordering messy GA: Solving permutation problems with the fast messy genetic algorithm and random. University of Illinois at Urbana-Champaign, IlliGAL Rep: 000004, 2000

共引文献30

同被引文献14

  • 1钟伟才,刘静,刘芳,焦李成.二阶卡尔曼滤波分布估计算法[J].计算机学报,2004,27(9):1272-1277. 被引量:6
  • 2周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:210
  • 3Muehlenbein H.From recombination of genes to the estimation of distributions I Binary parameters[J].Parallel Problem Solving from Nature, 1996;4 : 178-187.
  • 4Baluia S.Fast probabilistic models for combinatorial optimization[C]. In:Proc of the 15 th National Conference on Artificial I Intelligence (AAA-98) ,AAA Press, 1998 :469-476.
  • 5Pelikan M.The bivariate marginal distribution algorithm,Advanced in soft computing-Engineering Design and Manufacturing[M].London: Springer-Verlag, 1998: 521-535.
  • 6Bonet J D et al.MIMIC:Finding Optima by Estimating Probability Densities,Advances in Neural Information Processing System[M].The MIT Press,Cambridge,1997.
  • 7Baluia S.Davies S.Using optimal dependency-trees for combinatorial optimization learning the structure of the search spece[C].In;Proc of the 14th International Conference on machine learning,Morgan Kaufmann,1997:30-38.
  • 8Bonet D J S,Isbell C L,Viola P.MIMIC:Finding Optima byEstimating Probability Densities[C]//Proc.of NIPS’97.Cambridge,UK:MIT Press,1997.
  • 9朱慧明,韩玉启.贝叶斯多远统计推断理论[M].北京:科学出版社,2006.
  • 10Rajkumar R P,Takeshi F P,Pravir K.Advances in SoftComputing[M].London,UK:Spring-Verlag,1999.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部