期刊文献+

基于相关数学模型的关联规则应用研究 被引量:4

An Investigation of Association Rules Based on Relation Mathematical Model
下载PDF
导出
摘要 1 引言 数据挖掘[1]是一个从数据中提取出有效的、新颖的、潜在有用的、并能最终被人理解的模式的非平凡过程.数据挖掘可以挖掘出的知识包括关联规则(Association)、特征规则(Characterization)、分类规则(Classification)、聚类规则(Clustering)和趋势规则(Trend)等.数据挖掘是一交叉学科,涉及到诸如统计学、数据库、人工智能、数据可视化等学科. The relation mathematical model is a method of analyzing spatial distribution features of reliant relations one another among every geographical factors- First,this paper analyzes population growth rate and GDP growth rate by providence in China in 90-92,92-94,94-96 and 96-98. In 90-92,the general trend is:population growth rate is descending; GDP growth rate is descending;the regions in which population growth is high are developed regions. The relation of population growth rate and GDP growth rate in defferent periods with relation mathematical model method is studied as well. According to most developed areas and some poor areas,population growth is in inverse proportion to GDP growth rate,while population growth is in proportion to GDP growth rate according to most medium developed areas and the other poor areas. All these results are according with real in China. So we can see that relation mathematical model is useful method in mining association rules.
出处 《计算机科学》 CSCD 北大核心 2002年第5期104-106,共3页 Computer Science
基金 国家计委2000年高技术应用项目"人口地理信息系统建设技术支撑体系"的支持
关键词 数据挖掘 数据库 数据对象 关联规则 数学模型 Data mining,Association rules,Relation mathematical model,Population growth rate,GDP growth rate
  • 相关文献

参考文献11

  • 1Fayyad U , Piatetsky-Shapiro G, Smyth P. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96). Portland, Oregon, AAAI press,1996
  • 2冯建生.KDD及其应用[J].宝钢技术,1999(3):27-31. 被引量:9
  • 3关俐,梁洪峻.数据仓库与数据挖掘[J].微型电脑应用,1999,15(9):17-20. 被引量:33
  • 4Shaw G,Wheeler D. Ststistical techniques in geographical analysis[M]. London: David Fulton Publishers, 1994
  • 5吕安民,林宗坚,李成名.数据挖掘和知识发现的技术方法[J].测绘科学,2000,25(4):36-39. 被引量:35
  • 6Agrawal R, Imielinski T, Iyer B,et al. Mining association rules between sets of items in large databases. In: Proc. of ACM SIG-MOD Conf. On managenment of data, 1993. 207~216
  • 7Agrawal R, Srikant R. Fast algorithms for mining association rules. In:Proc. of VLDB-1994, Chile, Sep. 1994. 487~499
  • 8Agrawal R ,Srikant R. Mining generalized association rules. In:Proc. of VLDB-1995, Swizerland, 1995. 407~419
  • 9Fayyad U, Piatesky-Shapiro G, Smyth, P. From data mining to knowledge discovery: An overview. Advances in knowledge discovery and data mining, MIT Press, 1996.1~34.
  • 10Park M, Chen M, Yu P. An effective hash based algorithm for mining association rules. In:Proc. of ACM SIGMOD, 1995. 175 ~186

二级参考文献15

  • 1高文.KDD:数据库中的知识发现[J].计算机世界,1998,(37).
  • 2黄长植 孟海军.公安数据库应用呼唤KDD[J].计算机世界,1995,3:121-121.
  • 3Harjinder S.Gill.《数据仓库--客户/服务器计算指南》[M].清华大学出版社,..
  • 4陈文伟.《智能决策技术》[M].电子工业出版社,..
  • 5Joyce bischoff Ted Alexander.《数据仓库技术》[M].电子工业出版社,..
  • 6Herb Edelstein.《浅说数据挖掘》[J].计算机系统应用,1998,4.
  • 7陈荣,徐用懋,兰鸿森.多层前向网络的研究——遗传BP算法和结构优化策略[J].自动化学报,1997,23(1):43-49. 被引量:51
  • 8Usama F, GregoryP-S, Padhraic S. Proceedings of the Second International Conference on Knowledge Discoveryand Data Mining (KDD-96)[C]. Portland, Oregon AAAI press: August 2-4,1996.
  • 9黄长植 孟海军.公安数据库应用呼唤KDD[J].计算机世界,1999,(3):121-123.
  • 10卢美律.数据库里的知识发现[J].科学,1997,49(6):25-28. 被引量:9

共引文献72

同被引文献17

  • 1严波,李旭宏.城市轨道交通信号系统的维护与保养模式[J].城市轨道交通研究,2005,8(5):39-42. 被引量:13
  • 2M.Easter,H.P.Kriegel and J.Sanuer.Spatial Data Mining:A Database Approach[A].In:Proc 5th int Symposium on Large Spatial Database(SSD97,Lecture Notes in Computer Science[C].Berlin,Heideberg:Springer,1997.
  • 3K.Koperski,J.W.Han and N.Stefanovic.An Efficient Two-Step Method for Classification of Spatial Data[A].In:Proceedings of the International Symposium on Spatial Data Handling (SDH'98)[C].Vancouver,1998.
  • 4W.Lu,J.W.Han and B.C.Ooi.Discovery of General Knowledge in Large Spatial Databases[A].In:Proc.Far East Workshop on Geographic Information Systems[C].Singapore,1993.
  • 5K.Koperski and J.W.Han.Discovery of Spatial Association Rules in Geographic Information Databases[A].In:Advance sin Spatial Databases,Proceedings of 4th Symposium(SSD'95)[C].Berlin,Heideberg:Springer,1995.
  • 6J W Han,M D Kamber.数据挖掘概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2001.
  • 7赵时昱,蔡国强,贾利民,等.基于数据融合的轨道交通车载故障智能诊断系统[J].智能系统学报,2008,12(3):76-79.
  • 8IEEE 1474.1-2004以通信为基础的列车控制(CBTC)性能和功能要求[S].
  • 9张雪伍,苏奋振,石忆邵,张丹丹.空间关联规则挖掘研究进展[J].地理科学进展,2007,26(6):119-128. 被引量:30
  • 10周贤善,杜友福,邵世煌,余光柱.高置信度关联规则的挖掘[J].计算机工程与应用,2010,46(24):151-153. 被引量:5

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部