期刊文献+

一种基于有向图的几何约束系统分解方法

A Decomposition Method for Directed Graph Based Geometric Constraint System
下载PDF
导出
摘要 1引言 约束分解是几何约束满足问题(GCSP)研究的一个重要内容.此前已经有很多工作实现了将GCSP向非线性方程组求解的转化,并研究了约束系统的表达和分解的问题[1-4].特别是Kramer[6]以机构学为背景,提出了几何约束系统的无向图表达.后来,董金祥[10]将约束无向图转换成有向图,为构造全参数化的图形奠定了基础;J.Y Lee[1]则针对尺规构造图形进一步发展了基于自由度分析的图规约方法.但是在上述的研究中,对欠约束几何系统的分析比较欠缺. In a directed geometric constraint graph, all vertices in each strongly-connected sub-graph should be solved simultaneously. So, the scales of strongly-connected sub-graphs in the directed constraint graph directly affect the efficiency of constraint solving. However, how to furthest reduce the size of the largest subsystem that is simultaneously solved has been proved to be NP hard in general. In this paper an alternative decomposition method is presented for both under-constrained and well-constrained systems. It tries to find a sub-optimized solution instead of the most optimized one by adaptively adjusting the distribution of constraints. By the method the scales of strongly-connected sub-graphs of the directed constraint graph are greatly reduced and a more optimized and rational solving sequence is obtained.
出处 《计算机科学》 CSCD 北大核心 2002年第4期41-44,27,共5页 Computer Science
基金 "863"计划自动化领域项目资助 课题编号(9842-003)
关键词 几何约束满足问题 有向图 几何约束 系统分解方法 约束分解 图论 Geometric constraint Constraint decomposition Directed graph Strongly connected sub-graph
  • 相关文献

参考文献15

  • 1Hillyard R C,Braind I C. Analysis of dimensions and tolerance in computer-aided mechanical design. CAD, 1978, 10(3): 161~166
  • 2Light R,Gossard D C. Variational geometry: a new method for modifying part geometry for finite element analysis. Computer and Structures, 1983,7: 903~909
  • 3Lin V C, Gossard D C. Variational Geometry: Modification in Computer Aided Design. Computer Graphics, 1981, 15(3)
  • 4Light R,Gossard D C. Modification of geometric models though variational geometry. CAD, 1982, 14(4):209~214
  • 5Gossard D, Zuffante R,Sakurai H. representing dimensions, tolerances and features in MCAE systems. IEEEE Computer Graphics and Applications,1988,8(8)
  • 6Kramer G A. A geometric constraint engine. Artificial Intelligence, 1992. 58:327~360
  • 7陈立平,向文,余俊,周济.几何约束系统推理研究[J].华中理工大学学报,1995,23(6):70-74. 被引量:13
  • 8Hoffman C. Geometric Constraint Solving in R2 and R3 , in Computing in Euclidean Geometry, eds D. Z and F. Huang,World Scientific, 1995. 266~298
  • 9Gao Xiao-Shan,Chou Shang-Ching. Solving Geometric Constraint Systems. I. A Global Propagation Approach, CAD,1998,30(1):47~54
  • 10董金祥,葛建新,高屹,李海龙.变参绘图系统中约束求解的新思路[J].计算机辅助设计与图形学学报,1997,9(6):513-519. 被引量:43

二级参考文献3

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部