期刊文献+

智能数据挖掘引擎的设计与实现 被引量:2

Design and Implementation of A Intelligent Data Mining Engine
下载PDF
导出
摘要 1.引言数据挖掘就是从大量数据中提取或“挖掘”有用信息,进而提供决策支持。在互联网时代,商业竞争日趋激烈,就企业而言,对于企业所积累的大量数据进行高效挖掘、智能分析以辅助企业决策就变得越来越重要。因此,基于人工智能和统计技术的数据挖掘系统日益成为数据挖掘研究的焦点。高性能数据挖掘系统应支持高速数据处理并且提供足够的灵活性和可扩展性。基于此,在构建数据挖掘系统时。 The basic characters of a high-performance data mining system are to support high-speed data processing and provide enough flexibility and extensibility. In this article, according to the basic requirements of the high-performance data mining system, the substrate details of the data mining engine are discussed. In the discussion,the intelligent integration and call of the data mining algorithms are emphatically illustrated. Based on this discussion, a system architecture of the intelligent data mining engine is provided. On the basis of its architecture, some key techniques of the intelligent data mining engine are analyzed in detail and the implementation of this engine is briefly illustrated. In the end, the applications of the intelligent data mining engine are introduced.
出处 《计算机科学》 CSCD 北大核心 2002年第10期11-13,共3页 Computer Science
基金 国家自然科学基金(批准号:60003013)
关键词 数据库 数据处理 智能数据挖掘 引擎 设计 智能选择模块 Intelligent data mining engine, Data mining algorithms, Intelligent selection, Metaknowledge
  • 相关文献

参考文献13

  • 1Kim S-M,Kim J-D,Hong J-H,Nam D-E. A System for Association Rule Finding from an Internet Portal Site. INFORMS & KORMS-999-Seoul 2000 (Korea)
  • 2Han Jiawei, Kamber M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, Inc, 2001
  • 3Yaginuma Y. High-performance Data Mining System. FUJITSU Sci. Tech. J. 36. 2. Dec. 2000. 201-210
  • 4Collier K, Carey B. A Perspective on Data Mining. http://www. nau. edu/cdi. July 1998
  • 5Srikant A R. Fast Algorithms for Mining Association Rules. In:Proc. of the 20th Int'l. Conf. on Very Large Databases. Santiago, Chile. Sept. 1994
  • 6Stanfill C,Waltz D. Toward Memorybased Reasoning. Communications of the ACM, 1986,12
  • 7Ward J H. Jr. Hierarchical Grouping to Optimize an Objective Function. J. American Statistical Association, 1963, 58 (301):235~244
  • 8Quinlan R. RULEQUEST RESEARCH Home Page. http://www. rulequest. com.
  • 9Breiman L, et al. Classification and Regression Trees. C. J.Champion & Hall, International Thomson, Publishing. 1984
  • 10Kass G V. An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics, 1980, 29: 119~127

同被引文献10

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部