摘要
知识表示学习在自然语言处理领域获得了广泛关注,尤其在实体链指、关系抽取及自动问答等任务上表现优异。然而,大部分已有的表示学习模型仅利用知识库中的结构信息,无法很好地处理新的实体或关联事实极少的实体。为解决该问题,该文提出了引入实体描述信息的联合知识表示模型。该模型先利用卷积神经网络编码实体描述,然后利用注意力机制来选择文本中的有效信息,接着又引入位置向量作为补充信息,最后利用门机制联合结构和文本的向量,形成最终的联合表示。实验表明,该文的模型在链路预测和三元组分类任务上与目前最好的模型性能相近。
Knowledge representation learning has attracted much attention in natural language processing with encouraging results especially on tasks such as Entity Linking,Relationship Extraction,Question Answering and so on.However,most of the existing models only use the structural information of knowledge graph and cannot handle new entities or entities with few facts very well.This paper proposes a joint knowledge representation model which utilizes both entity description and structural information.Firstly,we introduce convolutional neural network models to encode the entity description.Then,we design the attention mechanism to select the valid information of the text.Moreover,we introduce the position vector as the supplementary information.Finally,agating mechanism is applied to integrate the structural and textual information into the joint representation.Experimental results show that our models outperform other baselines on link prediction and triplet classification tasks.
作者
彭敏
姚亚兰
谢倩倩
高望
PENG Min;YAO Yalan;XIE Qianqian;GAO Wang(School of Computer,Wuhan University,Wuhan,Hubei 430072,China)
出处
《中文信息学报》
CSCD
北大核心
2019年第2期51-58,共8页
Journal of Chinese Information Processing
基金
国家自然科学基金(61772382)
国家自然科学基金(61472291)