期刊文献+

基于领域情感词典特征表示的细粒度意见挖掘 被引量:11

Fine-grained Opinion Mining Based on Feature Representation of Domain Sentiment Lexicon
下载PDF
导出
摘要 细粒度意见挖掘的主要目标是从观点文本中获取情感要素并判断情感倾向。现有方法大多基于序列标注模型,但很少利用情感词典资源。该文提出一种基于领域情感词典特征表示的细粒度意见挖掘方法,使用领域情感词典在观点文本上构建特征表示并将其加入序列标注模型的输入部分。首先构建一份新的电商领域情感词典,然后在电商评论文本真实数据上,分别为条件随机场(CRF)和双向长短期记忆-条件随机场(BiLSTM-CRF)这两种常用序列标注模型设计基于领域情感词典的特征表示。实验结果表明,基于电商领域情感词典的特征表示方法在两种模型上都取得了良好的效果,并且超过其他情感词典。 Fine-grained opinion mining aims at detecting sentiment units and determining sentiment polarity from opinion text.Recent methods are mostly based on sequence labeling models,rarely using the information of sentiment lexicon resources.This paper proposes a fine-grained opinion mining method based on feature representation of domain sentiment lexicon.It generates feature representation by using domain sentiment lexicon,applying it as the input of sequence labeling model.We build a new sentiment lexicon in E-commerce domain,and then we design feature representation of domain sentiment lexicon for CRF and BiLSTM-CRF.Experiments on E-commerce reviews show that our proposed method performs well on both models and outperforms the method based on other lexica.
作者 郁圣卫 卢奇 陈文亮 YU Shengwei;LU Qi;CHEN Wenliang(School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China)
出处 《中文信息学报》 CSCD 北大核心 2019年第2期112-121,共10页 Journal of Chinese Information Processing
基金 国家自然科学基金(61572338 61876115) 江苏省高校自然科学研究重大项目(16KJA520001)
关键词 细粒度意见挖掘 情感词典 特征表示 序列标注模型 fine-grained opinion mining sentiment lexicon feature representation sequence labeling model
  • 相关文献

参考文献1

二级参考文献10

  • 1林传鼎,无.社会主义心理学中的情绪问题——在中国社会心理学研究会成立大会上的报告(摘要)[J].社会心理科学,2006,21(1):37-37. 被引量:15
  • 2Tsou Benjamin K Y, Kwong O Y, Wong W L. Sentiment and content analysis of Chinese news coverage [ J ]. International Journal of Computer Processing of Oriental Languages, 2005, 18(2) : 171-183.
  • 3Ekman P. Facial expression and emotion [ J]. Americam Psychologist, 1993, 48:384-392.
  • 4Yu Zhang, zhuoming Li, Fuji Ren, Shingo Kuroiwa. Semiautomatic emotion recognition from textual input based on the constructed emotion thesaurus[ C]. Proceedings of 2005 IEEE International Conference on Natural Language Processing and Knowledge Engineering (IEEE NLP-KE' 05). 2005 : 571-576.
  • 5许小颖,陶建华.汉语情感系统中情感划分的研究[C].第一届中国情感计算及智能交互学术会议论文集.2003:199-205.
  • 6Ekman P. An argument for basic emotions [ J]. Cognition and Emotion, 1992, 6: 169-200.
  • 7郑怀德,孟庆海.汉语形容词用法词典[M].北京:商务印书馆,2004.
  • 8Hugo Liu, Henry Lieberman, Ted Selker. A model of textual affect sensing using real-world knowledge [ C ] .Proceedings of the 8th International Conference on Intelligent User Interfaces. 2003: 125-132.
  • 9Hugo Liu, Ted Selker, Henry Lieberman. Visualizing the affective structure of a text document [ C ].Proceedings of Conference on Human Factors in Computing Systems. 2003 : 740-741.
  • 10Hua Wang, Helmut Prendinger, Takeo Igarashi. Communicating emotions in online chat using physiological sensors and animated text [ C ].Proceedings of Conference on Human Factors in Computing Systems. 2004: 1171- 1174.

共引文献380

同被引文献118

引证文献11

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部