期刊文献+

网络流量的神经网络直接自适应控制

Neural Network Direct Adaptive Control for Flow Rate in Networks
下载PDF
导出
摘要 设计了在线学习的网络流量神经网络直接自适应控制器,其适应能力及高速并行处理能力能很好地满足了网络控制所必需的适应性、鲁棒性和实时性的要求。从而使信源的发送速率能快速响应网络状态的变化,保证了网络处于良好的运行状态。其理论分析得到了仿真计算结果的验证。 The paper designs the neural network direct adaptive control for flow rate in networks, which is self-learning on line. The abilities of adaptation and high-speed parallel processing can meet the requirements of adaptability, robustness and realtime which is necessary to network control. Thus the source rates can respond to the changes of network status rapidly, and the network can be under the good condition at operation. Moreover, the theoretical analysis is verified by simulation.
出处 《计算机工程》 CAS CSCD 北大核心 2003年第7期20-22,共3页 Computer Engineering
基金 国家973重点基础研究发展项目资助(G1998030415)
关键词 ATM网络 流量控制 神经网络 ATM network Flow rate control Neural network
  • 相关文献

参考文献4

  • 1Kolarov A, Ramamurthy G. A Control Theoretic Approach to the Design of Closed Loop Rate Based Flow Control for High Speed ATM Networks. Kobe, Japan: in Proc.IEEE Infocom'97.1997-04.
  • 2Lengliz I, Kamotm F. A Rate-based Flow Control Method for ABR Service in ATM Networks, Computer Networks,2000,34:129-138.
  • 3Rohrs C E, Berry R A., A Linear Control Approach to Explicit Rate Feedback in ATM Networks. Kobe. Japan: in Proc.IEEE Infocom'97, 1997 -04.
  • 4Johansson P, Nilsson A A. Discrete Time Stability of an Explicit Rate Algorithm for the ABR Service. Lisboa,Portugal: in IEEE ATM'97 Workshop. 1997-05.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部