期刊文献+

一种新的普遍化关联规则挖掘算法 被引量:2

A Novel Algorithm for Mining Generalized Association Rules
下载PDF
导出
摘要 提出了一种新颖的普遍化关联规则挖掘算法GARL。该算法连续扫描数据库事务序列,在最多不超过两遍扫描后生成所有频繁项目集,在首次扫描数据库时,能为用户给出反馈信息,允许用户对最小支持率进行调整,该算法能连续处理事务序列,可用于网上在线数据挖掘。 A novel algorithm GARL for mining generalized association rules is proposed. It continuously scans transaction sequences in database and produces a set of all frequent itemsets for a user-specified m inimum support after at most two scans. During the first scan of the database, it can give continuous feedback and allows user to change the minimum support. GARL processes a transaction sequences continuously and can be used for on-line data mining on network.
出处 《计算机工程》 CAS CSCD 北大核心 2003年第7期4-6,共3页 Computer Engineering
基金 国家自然科学基金(60173058) 陕西省教育厅科学研究基金(00JK021)
关键词 知识发现 数据挖掘 关联规则 普遍化关联规则 Knowledge discovery Data mining Association rules Generalized association rules
  • 相关文献

参考文献5

  • 1Fayyad U, Piatetsky-Shapiro G, Smyth P. The KDD Process for Extracting Useful Knowledge from Volumes of Data [J].Communications of the ACM, 1996,39(11 ):27-35.
  • 2Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Set of Items in Large Databases[C]. In Proceedings of the 1993 ACM-SIGMOD Conference on Management of Data,Washington, D C, 1993:207-216.
  • 3Strikant R, Agrawal R. Mining Generalized Association Rules[C].In Proceedings of the 21st VLDB Conference, Zurich, Switzerland,1995:d02-419.
  • 4Agrawal R, Strikant R. Fast Algorithms for Mining Association Rules[C]. In Proceedings of the 20th VLDB Conference, Santiago,Chile, 1994:2472.
  • 5Han J, Fu Y. Discovery of Multiplc-lcvcl Association rules from Large Databases[C]. In Proceedings of the 21st VLDB Conference,Zurich, Switzerland, 1995:402-419.

同被引文献15

  • 1Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases [C]. Proceedings of the ACM SIGMOD conference on management of data, 1993, 207-216.
  • 2Han J, Pei J, Yin Y. Mining frequent pattems without candidate generation [C]. Proc 2000 ACM-SIGMOD Int Conf Management of Data(SIGMOD' 00), Dalas, TX, 2000.
  • 3Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules in large databases[C]. Proceedings of the 21st International Conference on Very large Database,1995.
  • 4Mannila H, Toivonen H, Verkamo A. Efficient algorithm for discovering association rules[C]. AAAI Workshop on Knowledge Discovery in Databases, 1994.181-192.
  • 5Toivonen H. Sampling large databases for association rules[C].Bombay, India: Proceedings of the 22nd International Conference on Very Large Database, 1996.
  • 6Brin S, Motwani R, Silverstein C. Beyond market baskets: Generlizing association rules to correlations[C]. Proceedings of the ACM SIGMOD, 1996. 255-276.
  • 7Park J S, Chen M S, Yu P S. An effective hash-based algorithm for mining association rules[C]. San Jose, CA:Proceedings of ACM SIGMOD International Conference on Management of Data, 1995. 175-186.
  • 8Ng R, Lakshmanan L V S, Han J. Exploratory mining and pruning optimizations of constrained associations rules[C]. Seattle,Washington: Proceedings ofACM SIGMOD International Conference on Management of Data, 1998.13-24.
  • 9HANJia-wei KAMBERM.数据挖掘概念与技术[M].北京:机械工业出版社,2001.1 51-161.
  • 10惠晓滨,张凤鸣,虞健飞,牛世民.一种基于栈变换的高效关联规则挖掘算法[J].计算机研究与发展,2003,40(2):330-335. 被引量:15

引证文献2

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部