期刊文献+

增强型AlGaN/GaN/AlGaN双异质结槽栅HEMT研究 被引量:2

Study of Enhancement-Mode AlGaN/GaN/AlGaN Double Heterojunction Recessed-Gate HEMT
下载PDF
导出
摘要 为了在获得高击穿电压的同时实现增强型器件,对AlGaN/GaN/AlGaN双异质结HEMT进行了栅槽刻蚀,得到阈值电压为0.6 V的增强型HEMT。对器件特性的变化机理进行了分析,发现刻蚀引入的陷阱态使器件的击穿性能降低。采用变频电导法,定量研究了反应离子刻蚀在AlGaN/GaN/AlGaN双异质结HEMT中引入的陷阱态。研究表明,刻蚀工艺在双异质结HEMT中引入了大量的浅能级陷阱,这些陷阱的能级主要分布在0.36~0.40 eV。 In order to achieve an enhancement-mode device with high breakdown voltage,a gate recess etching for AlGaN/GaN/AlGaN double heterojunction HEMT devices was carried out.An enhanced HEMT device with a threshold voltage of 0.6 V was obtained,and the change mechanism of the device characteristics was analyzed and explained.The trap states induced by etching had deteriorated the breakdown characteristics of the device.Frequency-dependent conductance measurements were carried out to investigate quantitatively the trap states induced by reactive ion etching in AlGaN/GaN/AlGaN double heterojunction HEMTs.It was shown that lots of trap states with shallow energy levels were induced by the gate recess etching for the double heterojunction HEMT,and the trap states were located at energy levels in a range of 0.36~0.40 eV for the recessed double heterojunction HEMT.
作者 罗俊 郝跃 LUO Jun;HAO Yue(The 24th Research Institute of China Electronics Technology Group Corporation,Chongqing400060,P.R.China;Key Lab.of Wide Band Gap Semicond.Mater.and Dev.,School of Microelec.,Xidian University,Xi’an710071,P.R.China)
出处 《微电子学》 CAS 北大核心 2019年第2期256-261,共6页 Microelectronics
基金 国家自然科学基金资助项目(61404014 61574023) 中国博士后科学基金资助项目(2015M582610)
关键词 增强型 双异质结槽栅HEMT 击穿特性 陷阱态 变频电导法 enhancement-mode recessed double heterojunction HEMT breakdown characteristics trap state frequency-dependent conductance measurement
  • 相关文献

参考文献1

二级参考文献15

  • 1Xing H L, Dora Y, Chini A, Heikman S, Keller S and Mishra U K 2004 IEEE Electron Dev. Lett. 25 161.
  • 2Zhang K, Cao M Y, Lei X Y, Zhao S L, Yang L Y, Zheng X F, Ma X H and Hao Y 2013 Chin. Phys. B 22 097303.
  • 3Zhao S L, Chen W W, Yue T, Wang Y, Luo J, Mao W, Ma X H and Hao Y 2013 Chin. Phys. B 22 117307.
  • 4Kumar V, Kuliev A, Tanaka T, Otoki Y and Adesida I 2003 Electron. Lett. 39 1758.
  • 5Oka T and Nozawa T 2008 IEEE Electron Dev. Lett. 29 668.
  • 6Kanamura M, Ohki T, Kikkawa T, Imanishi K, Imada T, Yamada A and Hara N 2010 IEEEElectron Dev. Lett. 31 189.
  • 7Okamoto Y, Ando Y, Hataya K, Nakayama T, Miyamoto H, Inoue T, Senda M, Hirata K, Kosaki M, Shibata N and Kuzuhara M 2004 IEEE Trans. Microw. Theory Tech. 52 2536.
  • 8Shul R J, Zhang L, Baca A G, Willison C G, Han J, Pearton S J, Lee K P and Ren F 2001 SolidState Electron. 45 13.
  • 9Chan C Y, Lee T C, Hsu S S H, Chen L and Lin Y S 2007 Jpn. J. Appl. Phys. 46 478.
  • 10Kuzrm'k J, Javorka P, Marso M and Kordog P 2002 Semicond. Sci. Tech- nol. 17 L76.

同被引文献2

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部