期刊文献+

库存问题的子值结点决策影响图方法 被引量:1

Research on Solving the Inventory Problem by Applying the Method of Decision Influence Diagrams with Subvalue Nodes
下载PDF
导出
摘要 本文运用子值结点决策影响图方法,表征求解带有预测和相关需求的库存问题,并将其与动态规划方法作了比较。 Traditionally,we solve the inventory problem with dynamic programming.In this paper,applying the method of Decision Influence Diagrams with subvalue nodes,we formulate and handle the inventory problem with forecasts and correlated demands,and make a comparison to the two methods.
作者 董志强 赵勇
出处 《中国管理科学》 CSSCI 2003年第2期50-54,共5页 Chinese Journal of Management Science
关键词 库存问题 子值结点决策影响图 动态规划 inventory problem decision influence diagrams dynamic programming.
  • 相关文献

参考文献9

  • 1史新生,董志强,王胜利.决策影响图方法及其有效评估[J].系统工程理论方法应用,1995,4(4):59-66. 被引量:1
  • 2董志强.决策影响图理论和概率推理研究[J].北京航空航天大学,1994,:24-39.
  • 3R. A. Howard & J. E. Matheson, Influence diagrams, In the Principles and Applications of Decision Analysis[ M]. eds.R. A. Howard & J. E. Matheson, Strategic Decision Group,1983.
  • 4S. M. Olmsted, On Representing and Solving Decision Problems[D]. Dept of EES,Stanford Uni. , 1983.
  • 5R. D. Shachter, Evaluating Influence Diagrams [ J ]. Oper.Res. , 1986,34(6) :871 - 882.
  • 6J. A. Tatman, Decision Processes in Influence Diagrams:Formulation and Analysis [ D ]. Dept. of EES, Stanford Uni., 1986.
  • 7R. D. Smallwood, The Influence Diagrams of Partially Observable Markov Processes over an Infinite Horizon[J]. Reliab. Engin. and Safety, 1999,40(2) : 115 - 162.
  • 8R. D. Shachter,An Ordered Examination of Influence Diagrams[ J ]. Networks, 2000,30 : 565 - 577.
  • 9R. D. Shachter. & C. R. Kenley, Gaussian Influence Diagrams[J]. Mgmt. Sci. 1999,45(5) :528 - 550.

二级参考文献1

同被引文献14

  • 1Jukic T, Bencina J, Vintar M. Multi-attribute evaluation of e-government projects., slovenian approach[J]. Inter national Journal of Information Communication Technol- ogies and Human Development,2012, 1(4): 82-92.
  • 2You C J, Lee C K M, Chen S L, et al. A real option theoretic fuzzy evaluation model for enterprise resource planning investment [J]. Journal of Engineering and Technology Management, 2012, 29 ( 1 ) : 47 - 61.
  • 3Kahneman D, Tversky A. Judgement under uncertainty: Heuristica and biases [M]//The simulation heuristic. New York : Cambridge University Press, 1982.
  • 4Balke A, Pearl J. Probabilistic evaluation of counterfac- tual queries[C]. Proceedings of the 12th national con ference on Artificial intelligence. MIT Press, 1994.
  • 5Heckerman D, Shachter R. A decision based view of causality[C]//Proceedings of tenth conference on uncer tainty in artificial intelligence. San Francisco.. 1994.
  • 6Heckerman D, Shachter R. Decision-theoretic founda tions for causal reasoning[J]. Journal of Artificial Intelli- gence Research,1995, (3) : 405-430.
  • 7Dawid A P. Influence diagrams for causal modeling and inference[J]. International Statistical Review, 2002, 70 (2). 161-189.
  • 8Kjaerulff U B, Madsen A L. Bayesian networks and in- fluence diagrams: a guide to construction and analysis [M]. Springer, 2007.
  • 9Lin Yonghuang, Lin C C, Tyan Y Y. An integrated quantitative risk anslysis method for major construction accidents using fuzzy concepts and influence diagram [J]. Journal of Marine Science and Technology, 2011, 19(4) : 383-391.
  • 10Pearl J. Causality: models, reasoning and inference [M]. 2nd ed. New York: Cambridge University Press, 2OO9.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部