期刊文献+

半钢轮胎模具上盖刚度及疲劳寿命分析 被引量:2

Analysis of stiffness and fatigue life on semi steel tire mould
下载PDF
导出
摘要 通过轮胎模具在硫化工况下的上盖受力分析,根据板壳理论中圆形薄板计算理论,简化了半钢轮胎模具上盖受力模型,推导出半钢轮胎模具上盖刚度计算公式。通过计算不同上盖材料的最小厚度及其疲劳寿命,运用有限元数值模拟验证其刚度。根据上侧板材料和结构装配形式,运用有限元模拟计算其疲劳寿命,得到45锻钢比Q235材料疲劳寿命长以及整体式上盖上侧板结构比通过螺栓连接结构疲劳寿命长的结论。模拟结果能够指导上盖设计,掌握模具实时工作状态。 The simplified stress model of the top plate of the semi steel tire mould was proposed according to the stress analysis of the top plate under the vulcanization of the tire mould and the calculation theory of the circular plate in the plate and shell theory, and the formula for calculating the cover stiffness was deduced. The minimum thickness and fatigue life of different top plate materials were calculated, and the stiffness was verified by finite element simulation. Considering the material of top side plate and assembly structure, the fatigue life was also calculated by finite element simulation. It was concluded that the fatigue life of the 45 forging steel is longer than Q235 and the fatigue life of side plate structure of the overall top plate is longer than of the bolt connection structure. The design of the upper cover can be guided and the working status of the mould can be grasped according to the simulating results.
作者 胡海明 徐方鑫 HU Hai-ming;XU Fang-xin
出处 《模具技术》 2019年第2期40-43,47,共5页 Die and Mould Technology
关键词 半钢轮胎模具 上盖 刚度计算 疲劳寿命 semi steel tire mould top plate stiffness calculation fatigue life
  • 相关文献

参考文献2

二级参考文献20

  • 1叶进雄.全钢载重子午胎滚动阻力有限元仿真与试验分析[D].北京:清华大学,2007 :7-8.
  • 2Rivlin R S,Thomas A G. Rupture of Rubber. 1. Characteristic Energy for Tearing[J]. Journal of Polymer Science, 1953,10 (3) : 291-318.
  • 3Gent A N, Lindley P B, Thomas A G. Cut Growth and Fatigue of Rubber. I. The Relationship between Cut Growth and Fatigue[J]. Journal of Applied Polymer Science, 1964,8 ( 1 ) :455 466.
  • 4Lake G J, Lindley P B, Thomas A G. Cut Growth and Fatigue of rubbers. 11 .Experiments on a Nonerystallizing Rubber[J]. Rubber Chemistry and Technology, 1965,38 (2) :301 313.
  • 5Paris P, Erdogan F A. Critical Analysis of Crack Propagation Laws[J]. Journal of Basic Engineering, 1963,85 (1) : 528-534.
  • 6Mars W V. Cracking Energy Density as a Predictor of Fatigue Life under Multiaxial Conditions[J]. Rubber Chemistry and Technology, 2002,75 (1) : 1-17.
  • 7Mars W V, Fatemi A. A Henomenological Model for the Effect of Ratio on Fatigue of Strain Crystallizing Rubbers[J]. Rubber Chemistry and Technology, 2003,76 (5) : 124 !- 1258.
  • 8Mars W V, Fatemi A. Analysis of Fatigue Life under Complex Loading: Revisiting Cadwell, Merrill, Sloman and Yost[J]. RubberChemistry and Technology, 2006,79 (4) : 589-601.
  • 9Mars W V. Computed Dependence of Rubber's Fatigue Behavior on Strain Crystallization[J]. Rubber Chemistry and Technology, 2009, 82(1) :51-61.
  • 10Thomas A G. Rupture of Rubber. V. Cut Growth in Natural Rubber Vulcanizates[J]. Journal of Polymer Science, 1958, 31 (123) : 467- 480.

共引文献19

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部