摘要
为获得高表面质量的加工零件,利用正交试验法,共进行了28组高速铣削加工试验,研究了轴向切削深度(A_d)、径向切削深度(R_d)、每齿进给量(f_z)和切削速度(v_c)4个加工参数对零件表面粗糙度(R_a)的影响规律。同时,通过开发二阶模型,结合使用回归方程,描述了模型中因素(即4个加工参数)和响应(即表面粗糙度)之间的关系。结果表明:高速铣削加工可以获得最小表面粗糙度0.202 14μm(顺铣加工)和0.207 34μm(逆铣加工),达到了与磨削工艺相当的表面质量;二阶模型较好地拟合了表面粗糙度波动性的分析和预测,对于顺铣加工,波动性由98.73%减小为98.20%,对于逆铣加工,波动性由94.2%减小为92.6%。
In order to obtain high surface quality parts,28 groups of high speed milling experiments were carried out using orthogonal test method.The effects of four processing parameters,including axial cutting depth(A_d),radial cutting depth(R_d),feed per tooth(f_z)and cutting speed(v_c),on the surface roughness(R_a)of parts were studied.At the same time,the relationship between the factors(i.e.four processing parameters)and the response(i.e.surface roughness)in the model was described by developing a second-order model and using regression equation.The results show that the minimum surface roughness of 0.202 14μm(down milling)and 0.207 34μm(inverse milling)can be obtained by high speed milling,and the surface quality is equivalent to that of grinding process.The second-order model fits the analysis and prediction of surface roughness fluctuation well.For down milling,the fluctuation is reduced from 98.73%to 98.20%.For reverse milling,the fluctuation is reduced from 94.2%to 92.6%.
出处
《模具技术》
2019年第4期6-11,共6页
Die and Mould Technology
基金
长沙市科技计划项目资助(kq1701168)
关键词
高速铣削
加工参数
表面粗糙度
优化
high speed milling
machining parameters
surface roughness
optimization