摘要
1 记号、概念和公式的说明1.1 {M^n,g}表示以g为黎曼度量的n维黎曼流形,为了简便用M^n表示。{M^m,g}表示M^n里黎曼度量为g的m维曲面。(1<m<n)常用M^m表示。1.2 指标α,β,γ,…λ,μ,ν,…取值范围为:1,2,…,n. a,b,c…,i,j,k,…取值范围为:1,2,…,m. A,B,C,…,P,Q,R,…取值范围为:m+1,m+2,…,n.1.3 Ricci主方向。即满足:(R_(αβ)-Tg_(αβ))V~β=0的方向(V~β)。一般有n个,且彼此正交。其中函数T称为对应于方向(V~β)的Ricci主曲率。
In recent years, LiZhonglin has researched Quasi-Einsteinian manifolds and obtained a system re- sults. In paper[1], he has found some properties of n(>3)dimensiomal- Riemannian manifold which ad- mits a family of totally umbilical hyperfaccs with constant mean cuvature. what properties of n(>3)dimensional Riemannian manifold admits a family umbilical m dimensional- surfaces with con- stant mean curvature have? In this paper, we have found some properties of n(>3)dimensional-Riemannian manifold in this respect and obtain severl theorems and propositions. It was also pointed out theorem 2. 1 in[1]]is a special case of this paper in our sense.
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
1992年第2期90-96,共7页
Journal of Henan Normal University(Natural Science Edition)
关键词
常平均曲率
m维曲面
黎曼形
Quasi-Einsteinian manifold Ricci principal curvature
weyl conformally curvature tensor
Generalized QE (B_λ~2) manifold