期刊文献+

一个可应用于WEB图片检索的综合词条权重模式 被引量:1

A Compositive Term Weight Scheme Applied to WEB Images Retrieval
下载PDF
导出
摘要 随着WEB上图片资源的日益丰富,人们对WEB图片检索的需求也日趋强烈。基于文本的WEB图片检索技术,是人们当前检索WEB图片的主要手段。反映图片内容的各相关文字的重要性是不同的,需要通过一个词条的权重模式来确定什么词条对反映图片内容更重要。在现有的WEB图片检索系统中,对影响词条权重的因素考虑不够,权重模式较粗糙。文章在词条权重的研究中,更广泛地考虑了影响权重的因素,提出了一个“综合权重模式”,并通过数学语言予以精确描述。 As the resources of images grow day by day on the WEB,the demand of image retrieval becomes stronger and stronger.At present ,the WEB images retrieval based on text is the primary means for people to resolve the difficult problem of looking for the images on the WEB.Every term of relevant texts that reflect the meanings of images is not equally important.It needs construct a term weight scheme to identify the difference in order to implement more effec-tive images retrieval.In present WEB images retrieval systems ,many weight schemes are coarse to some extent because some factors influencing the weight of term are not brought into the schemes.In this paper,after widely reviewing many factors impacting on weight of terms coming from relevant text,it designs a weight scheme named as“compositive weight scheme ”and provides the mathematic formalization of this scheme.
出处 《计算机工程与应用》 CSCD 北大核心 2003年第12期91-95,共5页 Computer Engineering and Applications
基金 上海市科学技术发展资金支持
关键词 Web图片检索 相关文本 综合权重模式 词条 Web Images Retrieval,Relevant Text,Compositive Weight Scheme ,Term
  • 相关文献

参考文献10

  • 1Chua T S et al.A Concept-based Image Retrieval System[C].In:Proceedings of 27th Annual Hawaii International Conference on System Science,Maul,Hawaii,1994;3:590-598.
  • 2Swain M J,Ballard D H.Color indexing[J].Int J Comput Vision,1991;7:11-32.
  • 3Finlayson G D.Colour Object Recognition[D].MSc Thesis.Simon Fraser University,1992.
  • 4Niblaek W et al.QBIC Project:querying images by content,using colour,texture,and shape[C].In:Proceedings of Conference on Storage and Retrieval for Image and Video Databases.San Jose,California,US.1908:1908-1920.
  • 5Strieker M,Orengo M.Similarity of color images[C].In:Proceedings of Conference on Storage and Retrieval for Image and Video Database Ⅲ.San Jose,California,1995;2420:381-392.
  • 6Guojun h1.Ben Williams.An Integrated WWW Image Retrieval SystemlCl.In:AUSWEB99,April,1999.
  • 7C Frankel,M Swain,V Athitsos.WebSeer:an image search engine for the wodd—wide web[R].Technical Report 94-14,Computer Science Department,University of Chicago,1996.
  • 8Marco La Cascia.Saratendu Sethi,Stan Sclaroff.Combining Textual and Visual Cues for Content—based Image Retrieval on the World Wide Web.IEEE Workshop on Content-based Access of Image and Video Libraries,1998-06.
  • 9Salton G,McGill M J Introduction to Modem Information Retrieval[M].McGraw—Hill Book Comoanv.1983.
  • 10Hongbiao CHEN.Looking for Better Chinese Indexes:A Corpus-based Approach to Base NP Detection and Indexing[D].博士论文.广东外语外贸大学,2001.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部