摘要
设计了一个集露天矿卡车运行状态、轮胎状况和油耗检测为一体的,并且为卡车驾驶员和管理人员提供实时的显示信息,以及具有通过数据挖掘方式确定车辆运行安全性功能的露天矿矿用运输卡车工况监控系统;并基于卡车工况数据特性,设计了一种基于循环神经网络的卡车轮胎安全数据挖掘模型。通过试验对比验证,该模型具有较高的准确性和较强的实用性。
This paper designs an open-pit mine truck working condition monitoring system,which integrates truck running status,tire status and fuel consumption detection,provides real-time display information for truck drivers and managers,and has the function of determining the safety of trucks through data mining.Based on the characteristics of truck working condition data,a truck tire safety data mining model based on cyclic neural network is designed.The experimental results show that the model has high accuracy and practicability.
作者
范永维
额尔德木吐
焦晓亮
莫祥伦
FAN Yongwei;E Erdemutu;JIAO Xiaoliang;MO Xianglun(Science and Technology Research Institute of Shenhua Group Zhungeer Energy Co.,Ltd.,Zhungeer010300,China;Information Center of Shenhua Group Zhungeer Energy Group Co.,Ltd.,Zhungeer010300,China;School of Mines,ChinaUniversity of Mining and Technology,Xuzhou221116,China)
出处
《煤矿安全》
CAS
北大核心
2019年第6期146-148,共3页
Safety in Coal Mines
关键词
露天矿
卡车工况
监控系统
数据挖掘
循环神经网络
open-pit mine
truck working condition
monitoring system
data mining
recurrent neural network