期刊文献+

声发射源多传感器数据融合识别技术研究 被引量:9

MULTISENSOR DATA FUSION TECHNIQUE FOR ACOUSTIC EMISSION SOURCE RECOGNITION
下载PDF
导出
摘要 波形数字声发射技术的发展给声发射源的特性识别带来了可能。噪声的影响和声发射信号传播过程的复杂性给声源的识别带来一定的困难。为了解决干扰情况下声发射源的定性问题 ,提出了在决策层上的多传感器数据融合的识别方法。利用定位传感器组中各个传感器得到的数据 ,同时考虑在同一个定位组中各个传感器所得数据的置信度不同 ,来对声发射源性质进行识别。实验结果证明 ,数据融合后声发射源特性识别的可靠性明显大于单个传感器 。 The development of digital and waveform acoustic emission (AE) technology made the recognition of AE source possible. Because of the noise and the complexity of AE signal transmission characteristics, the recognition of AE source was very difficult. In order to resolve the problem, the method of multisensor data fusion on decision level was presented. Using the data from each sensor in a location set and considering the confidence value for each sensor, AE source characteristics were acquired. Experimental results showed that multisensor data fusion method was more reliable and effective.
出处 《无损检测》 2003年第4期171-175,共5页 Nondestructive Testing
基金 北京市自然科学基金资助项目 ( 3 0 110 0 1)
关键词 声发射检验 数据处理 识别技术 传感器 数据融合 无损检测 Acoustic emission testing Data processing Recognition technique Sensor
  • 相关文献

参考文献5

  • 1刘雷健,杨静宇.基于融合信息的物体识别[J].模式识别与人工智能,1993,6(1):27-33. 被引量:19
  • 2沈功田.金属压力容器的声发射源特性及识别方法的研究[M].北京:清华大学,1998..
  • 3Dempster AP. Upper and lower probabilities induced by a multivalued mapping[J]. Annals of Mathematical Statistics, 1967,38(1) :325-339.
  • 4Yair Shimshoni,Nathan Intrator. Classification of seismic signals by integrating ensembles of neural networks[J]. IEEE Transactions on Signal Processing,1998,46(5) :1194- 1201.
  • 5Selzer F, Gutfinger D. Ladar and flir based fusion for automatic target classification[J/OL]. SPIE,1993. 236-246.

共引文献19

同被引文献110

引证文献9

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部