期刊文献+

格密码学研究 被引量:46

Survey of Lattice-based Cryptography
下载PDF
导出
摘要 格密码是一类备受关注的抗量子计算攻击的公钥密码体制.格密码理论的研究涉及的密码数学问题很多,学科交叉特色明显,研究方法趋于多元化.格密码的发展大体分为两条主线:一是从具有悠久历史的格经典数学问题的研究发展到近30多年来高维格困难问题的求解算法及其计算复杂性理论研究;二是从使用格困难问题的求解算法分析非格公钥密码体制的安全性发展到基于格困难问题的密码体制的设计.本文从格困难问题的计算复杂性研究、格困难问题的求解算法、格密码体制的设计以及格密码分析四个方面较为全面地回顾了格密码领域30多年来的主要研究成果,并试图体现四个研究领域方法的渗透与融合.此外,对与格密码理论研究有重要影响的一些格数学问题的经典研究方法与成果本文也进行了简单的描述. Lattice-based cryptography is widely believed to resist quantum computer attacks, which involves many cryptographic mathematical problems and belongs to interdisciplinary study. The development of lattice-based cryptography follows two main lines: One is to study the computational complexity and searching algorithms for solving hard problems in high dimensional lattices based on the research of classical lattice problems. The other is to analyze the security of non-lattice-based public-key cryptosystems using the algorithms solving hard lattice problems, and further to design the lattice-based cryptosystems. This paper gives a survey of the main progress on lattice-based cryptography in recent 30 years, which covers the following concerns: computational complexity and searching algorithms relating to hard lattice problems, design and cryptanalysis of lattice-based cryptosystems. The paper tries to reflect the relationship of these four areas. In addition, some classical lattice problems and relative important results are described.
出处 《密码学报》 2014年第1期13-27,共15页 Journal of Cryptologic Research
基金 国家自然科学基金重点项目(61133013) 国家重点基础研究发展计划(973计划)(2013CB834205)
关键词 格理论 密码分析 格密码体制 格困难问题 计算复杂性 lattice theory cryptanalysis lattice-based cryptosystem hard lattice problems computational complexity
  • 相关文献

参考文献10

  • 1Oded Regev.On lattices, learning with errors, random linear codes, and cryptography[J].Journal of the ACM (JACM).2009(6)
  • 2Johannes Bl?mer,Stefanie Naewe.Sampling methods for shortest vectors, closest vectors and successive minima[J].Theoretical Computer Science.2009(18)
  • 3Phong Q. Nguyen,Thomas Vidick.Sieve algorithms for the shortest vector problem are practical[J].Journal of Mathematical Cryptology.2008(2)
  • 4Jean-Sebastien Coron,Alexander May.Deterministic Polynomial-Time Equivalence of Computing the RSA Secret Key and Factoring[J].Journal of Cryptology.2007(1)
  • 5Dorit Aharonov,Oded Regev.Lattice problems in NP ∩ coNP[J].Journal of the ACM (JACM).2005(5)
  • 6Subhash Khot.Hardness of approximating the shortest vector problem in lattices[J].Journal of the ACM (JACM).2005(5)
  • 7Phong Q. Nguyen,Igor E. Shparlinski.The Insecurity of the Elliptic Curve Digital Signature Algorithm with Partially Known Nonces[J].Designs Codes and Cryptography.2003(2)
  • 8I. Dinur,G. Kindler,R. Raz,S. Safra.Approximating CVP to Within Almost-Polynomial Factors is NP-Hard[J].COMBINATORICA.2003(2)
  • 9Irit Dinur.Approximating SVP ∞ to within almost-polynomial factors is NP-hard[J].Theoretical Computer Science.2002(1)
  • 10Jin-Yi Cai.A new transference theorem in the geometry of numbers and new bounds for Ajtai’s connection factor[J].Discrete Applied Mathematics.2002(1)

共引文献1

同被引文献255

  • 1谢绒娜,秦晓宏,李宗俞.《密码学》教学中的思政教育探索[J].北京电子科技学院学报,2022,30(1):139-143. 被引量:3
  • 2吴旭光,韩益亮,朱率率,吴立强.密码应用与实践课程建设探讨[J].计算机教育,2020(3):8-11. 被引量:10
  • 3陈仁荣.有限集合上的划分与覆盖[J].常州工学院学报,2006,19(1):5-8. 被引量:4
  • 4吴树宏.A(n,k)和P(n,k)的精确公式[J].Journal of Mathematical Research and Exposition,2007,27(2):437-444. 被引量:4
  • 5Srinivasan Krishnaswamy,Harish K. Pillai.On the number of special feedback configurations in linear modular systems[J].Systems & Control Letters.2013
  • 6Claude-Pierre Jeannerod,Clément Pernet,Arne Storjohann.Rank-profile revealing Gaussian elimination and the CUP matrix decomposition[J].Journal of Symbolic Computation.2013
  • 7Lize Gu,Licheng Wang,Kaoru Ota,Mianxiong Dong,Zhenfu Cao,Yixian Yang.New public key cryptosystems based on non‐Abelian factorization problems[J].Security Comm Networks.2013(7)
  • 8D. J. Jeffrey.LU factoring of non-invertible matrices[J].ACM Communications in Computer Algebra (/).2010(1/2)
  • 9Andrius Raulynaitis,Eligijus Sakalauskas,Saulius Japertas.Security Analysis of Asymmetric Cipher Protocol Based on Matrix Decomposition Problem[J].Informatica.2010(2)
  • 10Wenqin Zhou,David J. Jeffrey.Fraction-free matrix factors: new forms for LU and QR factors[J].Frontiers of Computer Science in China.2008(1)

引证文献46

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部