期刊文献+

代数迭代映射分支值的优化算法 被引量:1

Optimum Algorithm for Bifurcation of Algebra Iterated Mapping
下载PDF
导出
摘要 以代数迭代映射动力系统的倍周期分叉问题为背景,研究出较精确计算代数迭代系统分支值的优化方法·以分支值为设计变量,映射点的最大开口量为目标函数,以映射点周期关系为等式约束和分支值分布范围为不等式约束,建立了关于分支值计算的新方法·通过两个代数迭代系统分支值实例分析计算,获得较高精度的结果· ?The accurate computation for getting ramification of algebra iterated system was studied by the analysis of the double period bifurcation of Logistic dynamic mapping system with ecological characteristic. Regarding iterated processes as objective function, parameters of algebra iterated system as design variables,and boundary condition of iterated variables as constrains,a new optimum method was proposed. The method was used to calculate bifurcation algebra iterated mapping. Turning constrains into punishing items, the punishing function method was used to deal with the optimum problem,and accurate results were acquired. The method can solve ramification of algebra iterated system rapidly and exactly.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第5期457-459,共3页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金重点资助项目(59835050)
关键词 代数迭代映射 分支值 优化算法 混沌 开口函数 algebra iterated mapping ramification optimum algorithm chaos aperture function
  • 相关文献

参考文献9

  • 1赫柏林.分叉、混沌、奇异吸引子、湍流及其他[J].物理学进展,1983,3(3):213-242.
  • 2刘军,侯祥林,王丹民,王铁光.Logistic映射分支值的最优化算法[J].东北大学学报(自然科学版),2000,21(5):580-582. 被引量:3
  • 3齐东旭.分形及其计算生成[M].北京:科学出版社,1995.20-24.
  • 4Takens F. Detecting strange attractors in turbulence [J ].Lect Notes in Math, 1981,891( 1 ):366- 381.
  • 5Cvitanovic P. Universality in chaos [ M]. 2nd ed. Berkeley:IOP Publishing. 1989.56 - 70.89 - 95.
  • 6Li T, Yorke J A. Period tree implies chaos[J]. Amer Math Monthly, 1975,18(2) :985 - 1001.
  • 7Mandelbrot B B. The fractal geometry of nature [ M ]. NewYork: Plenum Press, 1982.25 - 30.
  • 8Chang G Z, Sederberg T. Over and over again [M]. NewYork: Academic Press. 1994. 231 - 240.
  • 9Feigenbaum M J. Universality behavior in nonlinear system[M]. Los Alamos: Los Alamos Science, 1980.14- 17.

二级参考文献4

  • 1齐东旭,分形及其计算机生成,1995年,20页
  • 2赫柏林,物理学进展,1983年,3卷,3期,213页
  • 3薛嘉庆,最优化原理与方法,1983年
  • 4Li T Y,Am Math Monthly,1975年,82卷,985页

共引文献2

同被引文献9

  • 1Li T, Yorke J A. Period tree implies chaos[J]. Amer Math Monthly, 1975,18(2):985-1001.
  • 2Arechi F T, Boccaletti S, Ciofini M, et al. The control of chaos: theoretical schemes and experimental realizations[J]. Int J Bifurcation & Chaos, 1998,8(8):1643-1655.
  • 3Lindner J F, Ditto W. Removal, suppression and control of chaos by nonlinear design[J]. Applied Mechanics Review, 1995,48:795-807.
  • 4Takens F. Detecting strange attractors in turbulence[J]. Lect Notes in Math, 1981,898(1):366-381.
  • 5Feigenbaum M J. Universal behavior in nonlinear systems[J]. Los Alamos Science, 1980,1(1):14-27.
  • 6Wiggins S. Introduction to applied nonlinear dynamical systems and chaos[M]. New York: Springer-Verlag, 1990.122-158.
  • 7Cvitanovic P. Universality in chaos[M] . 2nd ed. Berkeley: IOP Publishing ,1989.56-70,89-95.
  • 8赫柏林.分叉、混沌、奇异吸引子、湍流及其他[J].物理学进展,1983,3(3):213-242.
  • 9刘军,侯祥林,王丹民,王铁光.Logistic映射分支值的最优化算法[J].东北大学学报(自然科学版),2000,21(5):580-582. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部