摘要
针对约束条件、系数和优化变量均为模糊数形式的线性和非线性全模糊优化问题 ,利用模糊数积分排序方法 ,提出了基于遗传算法的模糊优化问题求解方法 ,在该方法中对优化变量采用模糊数编码(每个变量用三个实数编码 ,对应三角模糊数中的 a,b,c) ,最后通过全模糊线性和非线性优化算例 。
Using fuzzy numbers ranking this paper presents a method based on genetic algorithm to solving fully fuzzy linear and nonlinear optimization problems that the constrain conditions, coefficients and optimum variables are fuzzy numbers. In the method the variables are encoded as triangular fuzzy numbers, i.e., a variable is represented by three real numbers which are a,b and c of a triangular fuzzy number respectively. It can be concluded that the method is efficient and practicable by means of fully fuzzy linear and nonlinear optimization examples.
出处
《系统工程理论与实践》
EI
CSCD
北大核心
2003年第4期106-110,共5页
Systems Engineering-Theory & Practice
基金
教育部"跨世纪优秀人才培养计划"基金 (1999)
高等学校博士学科点专项科研基金 (2 0 0 0 0 14 12 5 )
关键词
模糊数
模糊优化
遗传算法
fuzzy number
fuzzy optimization
genetic algorithm