摘要
提出利用准静态位移信息对粘弹性本构参数及温度场进行联合识别的求解策略。建立了适于敏度分析的粘弹性与温度场耦合问题的正演数值模型,并将其反演归结为一个带有多个不等式约束的非线性规划问题,采用凝聚函数法将此问题转化为一个可微的单约束优化问题。在此基础上,采用乘子法进行求解,给出了数值验证,探讨了信息误差对反演结果的影响。
This paper presents a solution strategy for the combined identification of constitutive parameters of viscoelasticity and temperature field via quasi-static displacements. A numerical model, facilitating to sensitivity analysis, is developed for the solution of direct viscoelasticity problems with temperature field. The corresponding inverse problem is converted into a problem of non-linear programming with multi-constrains of inequality. It can be further converted into an optimization with a single differentiable constraint by exploiting a maximum entropy based on aggregate function method. A technique of multiplier penalty function is used in search of the optimal solution. Numerical results are presented and the effects of both time-independent and time-dependent noise data on the results are discussed.
出处
《工程力学》
EI
CSCD
北大核心
2003年第2期100-106,共7页
Engineering Mechanics
基金
国家自然科学基金项目(10172024)
国家重点基金(10032030)
973项目NKBRSF(G1999032805)
教育部重点基金(99149)
教育部骨干教师资助计划(2000-65)
归国留学人员启动基金(1999-363)
工业装备结构分析国家重点实验室开放基金(GZ9814)
关键词
粘弹性
联合反演
非线性规划
凝聚函数
viscoelasticity
combined identification
non-linear programming
aggregate function