期刊文献+

压电功能梯度材料层反平面裂纹瞬态问题的研究 被引量:2

Transient Response of Functionally Graded Piezoelectric Layer with Finite Crack under Electromechanical Impact Load
下载PDF
导出
摘要 研究了压电功能梯度材料层中平行于边界的动态反平面裂纹问题 .数值方法为采用积分变换和位错函数法将问题简化为 Cauchy奇异积分方程 ,最后给出数值结果 ,讨论了载荷耦合参数、材料分布形式和裂纹位置等因素对断裂行为的影响 .结果发现 ,载荷耦合参数对规一化应力强度因子的影响比对规一化电位移强度因子的影响大 ,而电载荷的加载方向将决定动态应力强度因子在不同阶段的行为 .此外 ,电载荷的存在总是促进裂纹扩展 。 The dynamic anti-plane problem for a functionally graded piezoelectric layer containing a crack parallel to the boundary was considered. Integral transforms and dislocation density functions were employed to reduce the problem to Cauchy singular integral equations. The numerical results show the effects of loading combination parameter, material distribution and crack configuration on the fracture behavior. It is found that the loading combination parameter has more significant influence on the normalized stress intensity factor than that on the normalized electric displacement intensity factor. The direction of applied electric load determines the behavior of dynamic stress intensity factor at different stages. In addition, the existing electric load always enhances the crack propagation. However, the crack is easier to propagate under the negative electric load than under the positive load.
作者 陈建 刘正兴
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2003年第4期527-531,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目 ( 10 13 2 0 10 )
关键词 功能梯度材料 压电 应力强度因子 裂纹 Cracks Electric loads Fracture Stress intensity factors
  • 相关文献

参考文献11

  • 1林启荣,王宗利,刘正兴.端部受弯矩作用的压电弹性层合梁的二维解析解[J].上海交通大学学报,2000,34(8):1044-1047. 被引量:6
  • 2林启荣,金占礼,刘正兴.压电弹性层合梁在电场作用下的二维解析解[J].上海交通大学学报,2001,35(4):518-521. 被引量:2
  • 3Zhu X, Wang Q, Meng Z. A functionally gradient piezoelectric actuator prepared by metallurgical process in PMN-PZ-PT system[J]. J Mater Sci Lett,1995,14:516--518.
  • 4Chen Z T, Yu S W, Karihaloo B L. Antiplane shear problem for a crack between two dissimilar piezoelectric materials [J]. fat J Fracture, 1997, 86: L9--L12.
  • 5Kwon J H, Lee K Y. Interface crack between piezoelectric and elastic strips [J]. Archive Appl Mech,2000,70:707--714.
  • 6Meguid S A, Chen Z T. Transient response of finite piezoelectric strip containing eoplanar insulating cracks under eleetromeehanieal impact Mecj Mater, 2001,33 (2):85 -- 96.
  • 7Pak Y E. Crack extension force in a piezoelectric material[J]. J Appl Mech, 1990,67:647--653.
  • 8Suo Z, Kuo C M, Barnett D M, et al. Fracture mechanics for piezoelectric ceramics [J]. J Mech Plays Solids, 1992,40:739-- 765.
  • 9Zuo J Z, Sih G C. Energy density formulation and interpretation of cracking behavior for piezoelectric ceramics [J]. Theoret Appl Fraet Meeh, 2000, 34(1):17--33.
  • 10Erdogan F. Complex function technique. In: Continuum physics [M]. vol. Ⅱ. New York: Academic Press, 1975. 523--603.

二级参考文献10

  • 1徐芝纶.弹性力学,上册[M].北京:人民教育出版社,1979..
  • 2刘正兴,机电耦合有限单元及动力方程,1997年,31卷,7期,54页
  • 3Ding H J,International J Solids Structures,1996年,33卷,16期,2283页
  • 4Tzou H S,Journal of Dynamic Systems,Measurement,andControl,1991年,113期,484页
  • 5徐芝纶,弹性力学.上,1979年
  • 6Ding H J,Int J Solid Struct,1996年,33卷,16期,2283页
  • 7孙慷,压电学,1984年
  • 8徐芝纶,弹性力学.上册,1979年
  • 9刘正兴,杨耀文,蔡炜,李山青.机电耦合有限单元及动力方程[J].上海交通大学学报,1997,31(7):54-59. 被引量:20
  • 10刘正兴,李山青,章建国.平面问题中弹性压电材料的本构关系及应用[J].上海力学,1999,20(1):32-42. 被引量:9

共引文献6

同被引文献30

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部