期刊文献+

基于近邻方法的动目标多分辨率显示控制 被引量:2

Multi-resolution Display Control for Real Time Moving Objects Based on Nearest Distance Clustering
下载PDF
导出
摘要 对于多个动目标,依其空间分布,鈓用近邻方法,实施动目标的多分辨率显示控制。研究的目的是将动目标的时空数据可视化,显示出具有全局综合和局部放大视觉效果的可视化画面。首先针对动目标的时空离散数据的特点,提出对动目标的近邻分群准则和聚合算法;然后结合动目标的轨迹特点和目标编队跟踪思想,提出轨迹聚合的近邻分群准则和聚合算法。实现了基于近邻方法的动目标多分辨率轨迹聚合的显示控制。在原型系统中实现了多分辨率显示控制,在不同分辨率下,可示意性描画出分散的多编队动目标分布。取得了全局综合和局部放大的视觉效果。 In order to display disperse formations clearly an d to get visual effect of total integration and partial multi-plication image,mu lti-resolution display control method based on nearest distance clustering for real time moving objects is prompted.According to the characteristics of real time disperse tracking objects,nearest clustering method is presented and impr oved.Rule of tracking clustering is determined.Multi-resolution display contr ol for real time moving objects of disperse formations is implemented and proce ssing of display control is showed in prototype system.Total integration and pa rtial multiplication image is obtained.Distribution of multi disperse formation is implied on different resolution.
出处 《计算机工程与应用》 CSCD 北大核心 2003年第14期40-43,共4页 Computer Engineering and Applications
基金 部委科学基金资助
关键词 轨迹聚合 信息可视化 显示控制 tracking clustering,informatio n visualization,display control
  • 相关文献

参考文献3

  • 1[1]Lindstrom P,Koller Det al. Real-time continuous level of detail rendering of height fields[J].Computer Graphics(SIGGRAPH Proceedings),1996: 30~36
  • 2[2]Ronfard R,Rossignac J R.Full-range approximation of triangulated polyhedral[J].Computer Graphics Forum(Proceedings of Eurographics),1996; 15(3) :67~76
  • 3[3]Xia J C,Varshney A.Dynamic view-dependent simplification for polygonal models[C].In: IEEE Visualization'96.IEEE, USA, 1996: 323~339

同被引文献12

  • 1闫浩文,王家耀.基于Voronoi图的点群目标普适综合算法[J].中国图象图形学报(A辑),2005,10(5):633-636. 被引量:46
  • 2毋河海.凸壳原理在点群目标综合中的应用[J].测绘工程,1997,6(1):1-6. 被引量:49
  • 3胡晓峰.战争模拟原理与系统[M].北京:国防大学出版社.2009.
  • 4梁浩泽.面向COP的战场态势信息可视化技术研究[D].国防科学技术大学研究生院,2007.
  • 5LIU Ji-yu. Coordinate Transformation for GPS satellite surveying [ J]. Navigation, 1999, ( 1 ) ( in Chinese).
  • 6ZHAO Yu, LI Bing, LI Xiu, LIU Wenhuang, REN Shouju. Clus- ter ensemble method for databases with mixed numeric and categor- ical values[J]. J Tsinghua Univ (Sci&Teeh), 2006,46 (10).
  • 7HUANG Zhexue. Extentions to the k-means algorithm for cluste- ring large data sets with categorical values [ J ]. Data Mining and Knowledge Discovery, 1998, (2).
  • 8M Ester, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[ C]. Proc of the 1996 2nd int' 1 Conf on Knowledge Discovery and Data Mining. Portland : AAAI Press, 1996: 226-231.
  • 9A L Fred. Finding Consistent Clusters in Data Partitions [ C ]. The Proceedings of the 2nJ International Workshop on Multiple Classifier Systems, 2001:309-318.
  • 10赵恩来,郝文宁,赵水宁,韩宪勇.改进的基于密度方法的态势聚类显示算法[J].计算机工程,2010,36(18):35-37. 被引量:9

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部