期刊文献+

有序概念格与WWW用户访问模式的增量挖掘 被引量:2

An Ordered Concept Lattice and Incremental Discovery of User Traversal Patterns on the WWW
下载PDF
导出
摘要 访问模式是用户沿URL超链寻找和浏览网页规律的总结 ,发现用户访问模式对于帮助用户快速到达目标页面 ,进而实现搜索引擎的个性化导航具有重要意义 目前虽有一些挖掘用户访问模式的工作 ,但尚未发现能够处理增量数据的系统化挖掘算法 用户访问模式挖掘可由如下 3个步骤完成 :①由日志库提取最大向前关联路径 ,②由最大向前关联路径发现频繁关联路径序列 ,③由频繁关联路径序列得到最大频繁关联路径序列 ,其中②是问题的核心 为得到系统化算法 ,对概念格模型加以顺序约束 ,提出了有序概念格 ,并将其用于Web访问模式的增量发掘 给出了增量式高效挖掘算法 ,并与相关工作进行了比较 。 Traversal patterns reflect the regularities when web users browse and select web pages along URL hyper links The discovery of traversal patterns is useful for search engines to personalize their navigation by guiding web surfers to reach their target web pages rapidly Although some work has been conducted for mining user traversal patterns from server logs,no incremental algorithm has been reported The mining of user traversal patterns can be accomplished in three steps: ① extracting maximal forward reference paths from server log; ② discovering frequent reference paths based on the result of the first step; and ③ filtering to get maximal frequent reference paths from the output of the second step The second step constitutes the core of the whole mining process To take a systematic approach, sequential restrictions are added to the concept lattice (Galois lattice), and an ordered concept lattice is defined The proposed ordered concept lattice is then used in discovering frequent user traversal patterns An incremental and efficient mining algorithm is put forward,and a comparison with related works is also conducted Experimental results on both synthetic and real life data sets demonstrate the effectiveness of the novel algorithm
作者 金阳 左万利
出处 《计算机研究与发展》 EI CSCD 北大核心 2003年第5期675-683,共9页 Journal of Computer Research and Development
基金 国家自然科学基金 (69673 0 15 ) 吉林省科技发展计划项目基金 (2 0 0 0 0 111)
关键词 搜索引擎 WEB挖掘 Web应用挖掘 用户访问模式 有序概念格 search engine web mining web usage mining user traversal pattern ordered concept lattice
  • 相关文献

参考文献15

  • 1王志海,胡可云,胡学钢,刘宗田,张奠成.概念格上规则提取的一般算法与渐进式算法[J].计算机学报,1999,22(1):66-70. 被引量:66
  • 2谢志鹏,刘宗田.概念格与关联规则发现[J].计算机研究与发展,2000,37(12):1415-1421. 被引量:97
  • 3R Agrawal, R Srikant. Fast algorithms for mining association rules in large databases. In: Jorge B Bocca et al eds. Proc of the 20th Int' l Conf on Very Large Databases. Santiago, Chile: Morgan Kaufmann Publishers Inc, 1994. 478-499.
  • 4R Agrawal, R Srikant. Mining sequential patterns. In: Proc of the 11th Int'l Conf on Data Engineering. Taipei,Taiwan: IEEE Computer Society Press, 1995. 3-14.
  • 5R Srikant, R Agrawal.Mining sequential patterns:improvements. In: Peter M G Apers et al eds. Proc of the 5th Int'l Conf on Extending Database Technology (EDBT' 96), LNCS 1057. Avignon, France:Springer, 1996. 3-17.
  • 6O Nasraoui, H Frigui, A Joshi et al. Mining web access logs using relational competitive fuzzy clustering. University of Missouri, Tech Rep: CECS-98-01, 1998.
  • 7R Cooley, B Mobasher, J Srivastava. Information and pattern discovery on WWW. In: Proc of the Int'l Conf on Tools with Artificial Intelligence. Newport Beach: IEEE Press, 1997. 558-567.
  • 8J Srivastava, R Cooley, M Deshpande et al. Web usage mining:Discovery and applications of usage patterns from web data.SIGKDD Explorations, 2000, 2(1): 12-23.
  • 9Ming-Syan Chen, Jong Soo Park, Phillps Yu. Efficient data mining for path traversal patterns. IEEE Trans on Knowledge and Data Engineering, 1998, 10(2): 209-221.
  • 10R Wille. Restructuring lattice theory: An approach based on hierarchies of concepts. In: I Rival ed. Ordered Set. Dordrecht-Boston: Reidel, 1982. 445-470.

二级参考文献2

共引文献140

同被引文献14

  • 1胡娟,王常青,韩伟,全智.蚁群算法及其实现方法研究[J].计算机仿真,2004,21(7):110-114. 被引量:21
  • 2马瑞民,李向云.Web日志挖掘中数据预处理技术的研究[J].计算机工程与设计,2007,28(10):2358-2360. 被引量:19
  • 3Liu B;Liu Y Expected Value of Fuzzy Variable and Fuzzy Expected Value Models [外文期刊] 2002(04)
  • 4Zadeh L Fuzzy Sets 1965(03)
  • 5Lo W;Hong T;Wang S A top-down fuzzy cross-level web-mining approach 2003
  • 6Hong T;Chiang M;Wang Sh Mining weighted browsing patterns with linguistic minimum supports 2002
  • 7Pal S;Talwar V Web Mining in Soft Computing Framework:Relevance,State of the Art and Future Directions [外文期刊] 2002(05) DOI:10.1109/TNN.2002.1031947
  • 8Xing D;Shen J Efficient data mining for web navigation patterns [外文期刊] 2004(1) DOI:10.1016/S0950-5849(03)00109-5
  • 9Spiliopoulou M The Laborious Way from Data Mining to Web Mining 1999
  • 10Chen M;Park J;Yu P Efficient Data Mining for Path Traversal Patterns [外文期刊] 1998(3) DOI:10.1109/69.687980

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部