期刊文献+

基于工业分析的煤质发热量预测 被引量:18

Prediction of coal heating value based on proximate analysis
下载PDF
导出
摘要 为提升煤质工业分析数据对煤质发热量的预测精度,以167种中国煤和4 540种美国煤的信息为基础建立了基于SVR的煤质发热量预测模型。重构Majumder等和Parikh等提出的线性模型,用于对比非线性SVR和已有的基于线性的煤质发热量预测模型的预测能力。对比结果为:SVR对中国煤和美国煤的预测相对误差为2.16%和2.42%;重构后的Majumder模型为3.04%和4.61%;重构后的Parikh模型为3.39%和12.99%。工业分析对发热量的散点图也表明各工业分析组分与发热量之间没有明显的线性关系。研究结果表明,基于非线性SVR的煤质发热量预测模型具有更高的预测精度。 To predict the heating value of coals based on proximate analysis, a nonlinear model termed as support vector regression (SVR) was introduced in this study. A total of 167 Chinese coal samples and 4 540 U. S. coal samples were selected to develop and verify the SVR-based correlations. Some published linear correlations were also employed and redeveloped with the Chinese and U. S. coals to obtain a comparison with the SVR-based correlations developed in the present study. The comparison results indicate that the SVR-based correlations can be more accurate than the published linear correlations. The scatter plot of proximate analysis versus heating value also indicates that there is no obvious linear relationship between the proximate analysis and the heating value of coals. © 2015, China Coal Society. All right reserved.
出处 《煤炭学报》 EI CAS CSCD 北大核心 2015年第11期2641-2646,共6页 Journal of China Coal Society
基金 广东省省部产学研结合基金资助项目(2013B090500008 2012B091000166)
关键词 发热量 工业分析 预测 SVR Forecasting Heating
  • 相关文献

参考文献19

二级参考文献22

  • 1吕宏伯,黄铮,张方.神经网络BP算法的一种改进[J].北京工业大学学报,1995,21(1):111-116. 被引量:11
  • 2曹培刚,范志斌,武玉霞.煤质分析数据的人工神经网络处理[J].河北电力技术,1996,15(5):1-4. 被引量:1
  • 3杜京义,侯媛彬.基于遗传算法的支持向量回归机参数选取[J].系统工程与电子技术,2006,28(9):1430-1433. 被引量:39
  • 4关跃波,尹涌澜,孙斌,周云龙,刘文静.应用最小二乘支持向量机预测煤的发热量[J].东北电力大学学报,2006,26(6):66-69. 被引量:11
  • 5[5]Vapnik V N.The nature of Statistical Learning Theory.New York:Springer,1995.
  • 6[6]Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 7[7]Grolbraikh A,Tropsha A.Beware of q2![J].Mol Graphics Mod,2002,20(4):269-276.
  • 8[8]Tropsha A,Gramatica P,Gombar V K.The importance of being earnest:validation is the absolute essential for successful application and interpretation of QSPR models[J].Qsar Comb Sci,2003,22(1):69-77.
  • 9[9]Granatica P,Pilutti P.,Papa E.Validated QSAR prediction of OH tropospheric degradation of VOCs:splitting into training-test sets and consensus modeling[J].Chem Inf Comput Sci,2004,44(5):1794-1802.I
  • 10余俊,优化方法程序库OPB-1.原理及使用说明.下,1989年

共引文献70

同被引文献156

引证文献18

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部