期刊文献+

煤直接液化减压进料阀组数值模拟与优化 被引量:4

Numerical simulation and optimization on coal liquefaction hypobaric charge-in valve
下载PDF
导出
摘要 以煤液化减压塔进料前的角阀、球阀及相联管道(简称"减压进料阀组")的冲蚀磨损失效为研究对象,采用RNG k-ε湍流模型、蒸发-凝结模型、随机轨道模型,结合高温冲蚀磨损实验修正建立的冲蚀磨损模型,数值计算分析了角阀典型开度下流速、相分率和壁面磨损率等参数的分布规律,并结合实际损伤形貌验证了冲蚀磨损数值方法的正确性。研究结果表明:角阀流道为缩放结构,阀芯头部流速增加,压力降低,发生汽-液转换形成局部空化;空化引起阀组流道内有效传输面积减小,流体介质速度提高,对固相颗粒的拖曳加速效应显著,高速的颗粒碰撞壁面是造成球阀端面及出口管道冲蚀磨损的主要原因。基于等磨损速率对比分析角阀不同入口角度与球阀位置的对应关系,提出优化方法。 Angle valve, ball valve and connecting pipe (called as “hypobaric charge-in valve group”) in the front of coal liquefaction hypobaric tower were investigated in this study. RNGk-Εturbulent model, evaporation-condensation model, stochastic trajectory model and erosion model, which was corrected by high temperature erosion-wear experiment, were used to calculate the distribution of velocity, phase fraction and erosion rate in the typical opening of angle valve; then the accuracy of numerical calculation was proved by actual damage morphology. The study shows that: the angle valve port, which is a reducing structure, leads to the increase of velocity in valve core, the decrease of pressure, and the transition of liquid-vapor; the velocity of particle was accelerated by the increase of flow velocity on valve core head, the decrease of pressure, the high rate of gasification; the cavitation causes the decrease of effective transmission area of valve group, the increase of flow velocity, then the towing speed of solid increased significantly, so high-speed solid which impacts wall is the main reason for erosion wear. The relationship between the different inlet angles of angle valve and the position of ball valve was compared and analyzed to determine the optimization method of reducing wall erosion rate. © 2015, China Coal Society. All right reserved.
出处 《煤炭学报》 EI CAS CSCD 北大核心 2015年第12期2961-2966,共6页 Journal of China Coal Society
基金 国家自然科学基金委员会-神华集团有限公司煤炭联合基金资助项目(U1361107) 高等学校博士学科点专项科研基金资助项目(20133318120004) 浙江省教育厅科研资助项目(Y201329372)
关键词 减压进料阀组 冲蚀磨损 数理模型 数值模拟 优化方法 Computer simulation Erosion Flow velocity Mathematical models Numerical methods Numerical models Stochastic models Stochastic systems Velocity
  • 相关文献

参考文献15

  • 1傅晓锦.The optimum design of the pressure control spring of the relief valve based on neural networks[J].Journal of Coal Science & Engineering(China),2006,12(1):119-123. 被引量:1
  • 2Gadhikar A A,Sharma A,Goel D B,et al.Fabrication and testing of slurry pot erosion tester. Transactions of the Indian Institute of Metals . 2011
  • 3Tabakoff.W,Wakeman.T.Measured particle rebound characteristics useful for erosion prediction. American Society of Mechanical Engineers(Paper)82-GT-170 . 1982
  • 4Mazumder, Quamrul H.,Shirazi, Siamack A.,McLaury, Brenton.Experimental investigation of the location of maximum erosive wear damage in elbows. Journal of Pressure Vessel Technology, Transactions of the ASME . 2008
  • 5Finnie I,Stevick G R,Ridgely J R.The influence of impingement angle on the erosion of ductile metals by angular abrasive particles. Wear . 1992
  • 6A.J. Burnett,S.R. De Silva,A.R. Reed.??Comparisons between “sand blast” and “centripetal effect accelerator” type erosion testers(J)Wear . 1995
  • 7Subhash N. Shah,Samyak Jain.??Coiled tubing erosion during hydraulic fracturing slurry flow(J)Wear . 2007 (3)
  • 8Girish R. Desale,Bhupendra K. Gandhi,S.C. Jain.??Slurry erosion of ductile materials under normal impact condition(J)Wear . 2007 (3)
  • 9Girish R. Desale,C.P. Paul,B.K. Gandhi,S.C. Jain.??Erosion wear behavior of laser clad surfaces of low carbon austenitic steel(J)Wear . 2009 (9)
  • 10Girish R. Desale,Bhupendra K. Gandhi,S.C. Jain.??Particle size effects on the slurry erosion of aluminium alloy (AA 6063)(J)Wear . 2009 (11)

二级参考文献37

  • 1王鹏,步学朋,忻仕河,邓一英.煤直接液化残渣热解特性研究[J].煤化工,2005,33(2):20-23. 被引量:26
  • 2张玉卓.中国神华煤直接液化技术新进展[J].中国科技产业,2006(2):32-35. 被引量:40
  • 3刘文郁,杜铭华,曲思建,史士东.神华煤直接液化残渣热解动力学研究[J].煤炭学报,2006,31(2):215-218. 被引量:10
  • 4舒歌平.煤炭液化技术[M].北京:煤炭工业出版社,2004.
  • 5国家统计局.中华人民共和国2009年国民经济和社会发展统计公报[R].2010-02-25.
  • 6吴春来.煤直接液化[M].北京:化学工业出版社,2010.
  • 7舒歌平.神华煤直接液化技术及示范工程进展[A].煤炭清洁高效转化利用工业示范总结大会论文集[C].2010.
  • 8神华集团有限责任公司.神华煤直接液化示范工程关键技术优化总结报告[R].2006.
  • 9中国神华煤制油化工有限公司北京工程分公司.神华煤直接液化示范工程建设总结[R].2008.
  • 10中国神华煤制油化工有限公司鄂尔多斯煤制油分公司.神华煤制油示范工程生产运行情况总结报告[R].2010.

共引文献45

同被引文献25

引证文献4

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部