期刊文献+

随机时间依赖网络的K期望最短路径 被引量:12

K Expected Shortest Path in Stochastic and Time-Dependent Network
下载PDF
导出
摘要 首先给出了随机时间依赖网络模型、K期望最短路径问题的形式化描述 ,并针对公交网络推导出到达弧头结点的时刻所服从的概率密度函数、路径期望耗费的计算方法 ;然后 ,基于随机一致性假设和随机优势的概念给出了K期望最短路径问题的理论基础和算法并证明了算法的正确性 ;最后 。 Transportation, communication systems can be represented by networks with travel times that are both stochastic and time-dependent, which motivates the need for widely research on path planning in stochastic, time-dependent networks. When the arc weights are stochastic and time-dependent, the problem becomes considerably more difficult. Standard shortest path algorithms (such as the Dijkstra algorithm) are not valid, since travel times are random variable with probability distribution functions that vary with time. This paper addresses the problem of determining K expected shortest paths in stochastic, time-dependent networks. It first shows the building of stochastic, time-dependent network model, the description of K expected shortest paths problem, the demonstration of travel time probability distributions of K expected shortest paths problem, the demonstration of travel time probability distributions for the arcs in transportation area, and the calculation of expected travel time on path. Next, this paper presents the theoretical foundation of K expected shortest path, which justifies the algorithm (K_PFSD algorithm), based on a weaker stochastic consistency condition and stochastic dominance. K_PFSD algorithm determines the a priori K expected shortest paths for any departure time. Finally, this paper illustrates how the algorithm can be implemented and applied.
出处 《计算机学报》 EI CSCD 北大核心 2003年第3期323-331,共9页 Chinese Journal of Computers
基金 中国教育部科学技术重点项目 ( 990 2 5 ) 全国高等学校骨干教师基金 辽宁省自然科学基金 ( 9810 2 0 0 10 4)资助
关键词 K期望最短路径 路径规划 期望路径 随机时间依赖网络 NP问题 公共交通网络 Data structures Optimization Probability density function
  • 相关文献

参考文献9

  • 1Polychronopoulos G H. Stochastic shortest path problems with recourse. Networks, 1996,27(2): 133~143
  • 2Alexopoulos C. State space partitioning methods for stochastic shortest path problems. Networks, 1997,30(1):9~21
  • 3Corea G A, Kulkarni V G. Shortest paths in stochastic networks with ARC lengths having discret distributions. Network, 1993,23(3):175~183
  • 4Hall R W. The fastest path through a network with random time-dependent travel times. Transportation Science,1986,20(3):182~188
  • 5Wellman M P. Path planning under time-dependent uncertainty. In: Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence (UAI-95) Montreal, Quebec, Canada, 1995.18~20
  • 6Miller-Hooks E D, Mahmassani H S. Least possible time paths in stochastic, time-varying Networks. Computer & Operations Research, 1998,25(12):1107~1125
  • 7谭国真,高文.时间依赖的网络中最小时间路径算法[J].计算机学报,2002,25(2):165-172. 被引量:87
  • 8Tan Guo-Zhen, Cheng Zhen, Gao Wen. Distributed and parallel K shortest paths algorithm. In:Proceedings of the 6th International Conference for Young Computer Scientist, Hangzhou,China,2001.454~458
  • 9Mouskos K C. A GIS-based multimodal advanced travel information system. Computer-Aided Civil and Infrastructure Engineering, 1999,14(4): 267~279

二级参考文献2

共引文献86

同被引文献123

引证文献12

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部