期刊文献+

支持向量机中优化算法 被引量:14

A Survey of Optimization Algorithms in Support Vector Machine
下载PDF
导出
摘要 Optimization algorithm solving Lagrangian multipliers is the key of training SVM,determining the perfor-mance of SVM ,affecting practical applications of SVM in various fields widely. Some kinds of optimization algorithmsin SVM of overseas are introduced. We classify the optimization algorithms into two kinds: 1. the algorithms based onOsuna's decomposition strategy; 2. The iterative algorithms based on the changes of SVM formulation proposed byO. L. Mangasarian. We also analyze the characteristics of various optimization algorithms in SVM ,and predicting thetrend of research on optimization algorithm in SVM. Optimization algorithm solving Lagrangian multipliers is the key of training SVM, determining the performance of SVM, affecting practical applications of SVM in various fields widely. Some kinds of optimization algorithms in SVM of overseas are introduced. We classify the optimization algorithms into two kinds : 1. the algorithms based on Osuna's decomposition strategy; 2. The iterative algorithms based on the changes of SVM formulation proposed by O. L. Mangasanan. We also analyze the characteristics of various optimization algorithms in SVM,and predicting the trend of research on optimization algorithm in SVM.
出处 《计算机科学》 CSCD 北大核心 2003年第3期12-15,20,共5页 Computer Science
基金 国家自然科学基金(编号:20076041)
关键词 支持向量机 优化算法 机器学习 数据分类 可信模型 神经网络 Support vector machine, Optimization algorithms
  • 相关文献

参考文献1

二级参考文献1

共引文献2271

同被引文献79

引证文献14

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部