期刊文献+

例外关联规则挖掘 被引量:1

Exception Rule Mining
下载PDF
导出
摘要 Data mining is the process of discovering hidden structure or patterns in large quantities of data by usingkinds of analytic tools. The structure or patterns can help decision makers for advantageous actions. This paper intro-duces the concept of interestingness and reference rules ,and uses interestingness to estimate the information includedin rule,and then presents a method for mining exception rules while computing the interestingness according to thereference rules. Experiments compared with other methods show that the proposed method has the better effects. Data mining is the process of discovering hidden structure or patterns in large quantities of data by using kinds of analytic tools. The structure or patterns can help decision makers for advantageous actions. This paper introduces the concept of interestingness and reference rules,and uses interestingness to estimate the information included in rule,and then presents a method for mining exception rules while computing the interestingness according to the reference rules. Experiments compared with other methods show that the proposed method has the better effects.
作者 印鉴 周祥福
出处 《计算机科学》 CSCD 北大核心 2003年第3期40-43,共4页 Computer Science
基金 国家自然科学基金(69733030) 广东省自然科学基金(001264) 广东省教育厅<软件技术>重点实验室研究基金
关键词 关联规则 数据库 数据挖掘 兴趣度 数据处理 商业数据库 Data mining,Exception rules ,Interestingness,Common sense rules,Reference rules
  • 相关文献

参考文献7

  • 1[1]Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proc. 20th Int'l Conf. Very Large Data Bases (VLDB), 1994. 487~ 499
  • 2[2]Liu H.Lu H,Feng L, Hussain F. Efficient search of reliable exceptions. In Methodologies for Knowledge Discovery and Data Mining,LNAI 1574(PAKDD), Berlin: Springer, 1999. 194~203
  • 3[3]Padmanabhan B,Tuzhilin A. A belief-driven method for discovering unexpected patterns. In:Proc. Fourth Int'l Conf. Knowledge Discovery and Data mining(KDD), 1998. 94~100
  • 4周欣,沙朝锋,朱扬勇,施伯乐.兴趣度——关联规则的又一个阈值[J].计算机研究与发展,2000,37(5):627-633. 被引量:91
  • 5[5]Suzuki E, Kodratoff Y. Discovery of surprising exception rules based on intensity of implication. In Principles of Data Mining and Knowledge Discovery, LNAI 1510 ( PKDD ), Berlin:Springer, 1998.10~18
  • 6[6]Smyth P, Goodman R M. An information theoretic approach to rule induction from databases. IEEE Trans. Knowledge Discovery and Data Eng,1992,4(4): 301~316
  • 7[7]Suzuki E. Discovering unexpected exceptions: a stochastic approach. In: Proc. Fourth Int'l Workshop on Rough Sets, Fuzzy Sets ,and Machine Discovery(RSFD), 1996. 225~232

二级参考文献2

  • 1Aggarwal C C,Proc of the Int’ l Conf on Data Engineering,1998年,402页
  • 2Han J,Proc of Int’ l Conf Very Large Data Bases,1995年,420页

共引文献90

同被引文献4

  • 1[1]范明,孟小峰译,(加)Jiawei Han,Micheline Kamber 著.数据挖掘:概念与技术.机械_亡业出版社,2007.
  • 2[4]Kryszkiewicz.M:Mining with Cover and Extension Operators.In:Proc.of PKDD'00.Lyon,France.LNAI1910.Springer-Verlag,(2000).476-482.
  • 3[5]Kryszkiewicz.M:Inducing Theory for the Rule Set.In:Proc.of RSCTC'00.Banff,Canada,(2000).353-360.
  • 4李颖基,彭宏,郑启伦,曾炜.Web日志中有趣关联规则的发现[J].计算机研究与发展,2003,40(3):435-439. 被引量:20

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部