期刊文献+

DECOMPOSITION OF MATRICES INTO COMMUTATORS OF REFLECTIONS

DECOMPOSITION OF MATRICES INTO COMMUTATORS OF REFLECTIONS
原文传递
导出
摘要 Let F be a field and let resA = rank(A - I) for any A in GLnF. We prove that every matrix in SLnF is a product of at most [resA/2] + 2 commutators of reflections for n 】 2 except for n - 2 and F = F2.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2003年第1期67-73,共7页 系统科学与复杂性学报(英文版)
基金 This research is supported by the National Natural Science Foundation of China.
关键词 COMMUTATOR REFLECTION field. 矩阵 反向 换位子 分解
  • 相关文献

参考文献11

  • 1E. Cartan, Lecons sur la Theorie des Spineurs, Hermann, Paris, 1938.
  • 2J. Dieudonne, Sur les Groups Classiques, Hermann, Paris, 1948.
  • 3P. Scherk, On the decomposition of orthogonalities into symmetries, Proc. Amer. Math. Soc.,1950, 1: 481-491.
  • 4H. Radjavi, Decomposition of matrices into simple involutions, Lift. Algebra and Appl., 1975, 12:247-255.
  • 5D. Djokovic and J. Malzan, Products of reflections in the general linear group over a division ring,Lin. Algebra and Appl., 1979, 28: 53-62.
  • 6K. Shoda, uber den Kommutator der Matrizen, J. Math. Soc. Japan, 1951, 3 : 78-81.
  • 7R. Thompson, Commutaors in the special and general linear groups, Trans. Amer. Math. Soc.,1961, 101: 16-33.
  • 8A. Hahn, The elements of the orthogonal group as products of commutators of symmetries, J. of Algebra, 1996, 184: 927-944.
  • 9F. Knuppel, Products of simple isometries of given conjugacy types, Forum Math., 1993, 5: 441-458.
  • 10H. You and J. Z. Lan, Decomposition of matrices into 2-involutions, Lin. Algebra and Appl., 1993,186: 235-253.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部