期刊文献+

加边与去边图的特征值的扰动问题(Ⅰ) 被引量:1

Perturbation Problem of Eigenvalue of a Graph to Adding and Deleting an Edge(Ⅰ)
下载PDF
导出
摘要 研究简单 (无向 )图G在加边或去边后特征值的扰动问题 .利用矩阵理论方法 ,分别给出图G在加边与去边后恰有二个特征值改变的图的刻划 .对于图的加边情形 ,给出特征值及谱半径变化幅值的界的估计 ,并得到其到达界值的一组充要条件 ;同时还得到关于图的整谱性的刻划定理 . In this paper,We study the perturbation problem of eigenvalue of a simple graph G to adding and deleting an edge.Using theory and method of matrix,we give the characterizations that two eigenvalues of graph G changes when adding and deleting an edge respectively.
出处 《泉州师范学院学报》 2003年第2期1-5,共5页 Journal of Quanzhou Normal University
关键词 简单无向图 加边图 去边图 特征值 扰动 谱半径 整谱性 图论 simple graph adding and deleting an edge eigenvalue perturbation
  • 相关文献

参考文献14

  • 1[1]J H Bevis,K K Blount,G J Davis. et al. The rank of a graph after vertex addrtin[J]. Linear Algebra Appl. ,1997,265:55-69.
  • 2[2]J H Bevis,F J Hall,Integer LU-factorizations[J]. Linear Algebra Appl. ,1991,150:267-286.
  • 3[3]J H Bevis,G S Domke, V A Miller. Ranks of tress and grid graphs[J]. J. Combin. Math. Combin. Comput. , 1995,18:109-119.
  • 4[4]M N Eilingham. Basic subgraaphs and graph spectraa,Australas[J]. J. Combin. 1993,8:247-265.
  • 5[5]R Merris. Laplacian matrices of graphs: A survey[J]. Linear Algebra Appl. , 1994,198:143- 176.
  • 6[6]R Merris. Laplacian matrices of graphs:A survey[J]. Linear Algebra Appl. ,1994,198:143-176.
  • 7[7]B Mohar. The Laplacian spectrum of graphs, in Graph Theory Combinatorics, and Applications(Y. Alavi, G. chartrand,O. R. Ollermann,and A. J. Schwenk,eds. )[M]. New York,Wiley. 1991. 871-898.
  • 8[8]F. Haray and A. J. Schwenk,Which graphs have integral Spectraa? in Graphs and Combinatorics(R. A. Bari and F.Harary, eds.)[M]. Berlin: Springs- Verlag, 1974,45 - 59.
  • 9[9]H Minc. Nonnegative Matrices[M]. New York:John Wiley & Sons,1988.
  • 10[10]H Minc. Nonnegative Matrices,Acaclemic Press,New York,1988.

同被引文献6

  • 1[2]C A Coulson,G S Rushbrooke.Note on the method of molecular orbitals[J].Prac.Cambridge Phil.Soc.,1940,36:193-200.
  • 2[3]D M Cvetkovik,M Doob and it Sachs.Spectera of Graphs:Theory and Applications[M].New York:Academic,1980.
  • 3[4]F Harary,A J Schwenk,Which graphs have integral Spectra? in Graphs and Combinatorics(R.A.Bari and F.Harary,eds.) [M].Berlin:springs-Verlag,1974.45-51.
  • 4[5]D Cvetkovic,I Gutman.The algebraic multiplicity of the number zero in the spectrum of a bipartite graph[J].Mat.Vesnik,1972,9(24):141-150.
  • 5[6]T Katamura,M Niher On some sufficient conditions for a graph to have the eigenvalue of zero[J].Math.Japon.,1991,36:433-439.
  • 6[7]Da Song Cao,Hong Yuan.Graphs Characterized by the second eigenvalue[J].J Graph Theory,1993,17:325-331.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部