摘要
设E2n 为Euler数以及矩阵 E2n (t)定义为 En (t) =(et+i +j) 0≤i,j≤n,这里en =En,若n为偶数0 ,若n为奇数 ,我们得到了 E2 n(t)的一个一般分解形式 ;进而得到了det E2 n( 0 ) ,det E2 n( 1 )与det E2 n( 2 )
Let E 2n be the Euler numbers and the matrices n(t)(t =0,1,2,...)defined by n(t)=(e t+i+j )0≤i,j≤n, where e n =E n if n is even ,and e n =0 if n odd.We give the factorial result of n(t) .Furthermore,the computational formulae of det n (0),det n (1) and det n (2) are obtained.
出处
《洛阳师范学院学报》
2003年第2期5-8,18,共5页
Journal of Luoyang Normal University