期刊文献+

基于小波神经网络的在线警报处理系统 被引量:3

ON-LINE ALARM PROCESSING IN POWER SYSTEM USING WAVELET NEURAL NETWORKS
下载PDF
导出
摘要 利用小波变换在信号处理方面的时频分析能力和神经网络对任意非线性函数的普遍的逼近能力 ,提出了一个基于小波神经网络的电力系统故障段辨别方法。故障诊断系统依据保护继电器和断路器的采样信息估计电力系统中故障段的位置。仿真结果显示 ,小波神经网络故障诊断系统能正确估计电力系统单一故障和多重故障的位置 ,即使在电力系统中存在保护继电器和断路器误动或拒动的情况下 ,小波神经网络也能给出合理的结果。测试结果表明 。 A method of fault section estimation of power system base on wavelet neural network (WNN), which inspired by both wavelet transform and artificial neural network(ANN) that reveals readily properties of a signal in localized regions of the joint time-frequency space, is presented. The diagnostic system can be applicable to power system control center for fault section estimation using information of relays and circuit breakers. The simulation results show that the WNN based method can estimate fault section for single or multiple fault, and give the reasonable results even in the case of the failure of protective relay and circuit breakers, which is suitable for complex fault diagnosis. The test results suggest that the wavelet neural network method is promising in the development of fault diagnostic systems.
出处 《电力系统及其自动化学报》 CSCD 2003年第2期80-83,102,共5页 Proceedings of the CSU-EPSA
基金 天津自然科学基金资助 :0 2 3 80 12 11
关键词 电力系统 故障 在线警报处理系统 小波 神经网络 fault section estimation, wavelet neural network, power system
  • 相关文献

参考文献10

  • 1Monsef H,Ranjbar A M,Jadid S. Fuzzy rule-based expert system for power system fault diagnosis. IEE Proceedings-Generation, Transmission and Distribution,1997,144(2):186~192.
  • 2FukuimationcircuitC,Kawakami J. An expert system for fault estimation using information from protective relays and brakers. IEEE Transaction on power delivery,1986,1(4):83~90.
  • 3E1-Fergany A A,Yousef M T,E1-Alaily A A. Fault diagnosis in power systems-substation level-through hybrid artificial neural networks and expert system. In:IEEE/S Transmission and Distribution Conference and Exposition, USA, 2001,207~ 211.
  • 4Bretas A S,Hadjsaid N. Fault diagnosis in deregulated distribution systems using an artificial neural network.In:IEEE Power Engineering Society Winter Meeting,Singapore, 2001,821 ~ 823.
  • 5Narendra K G,Sood V K,Khorasani K. Application ofa radial basis function (RBF) neural network for fault diagnosis in a HVDC system. IEEE Transactions on Power Systems, 1998,13 (1) : 177~ 183.
  • 6Wilson R,Calay A D. A generalized wavelet transformfor Fourier analysis. IEEE Transaction on Information Thoery, 1992,38(2) : 674~ 690.
  • 7Wornell G W,Oppenheim A V. Wavelet-based representations for a class of self-similar signals with application to fractal modulation. IEEE Transaction on Information Thoery, 1992,38 (3) : 785 ~ 800.
  • 8Daponte P, Mercurio G, Rapuano S. A wavelet networks-based method for the digital telecommunication system monitoring. IEEE Transactions on Instrumentation and Measurement, 2001,50(6) : 1773~ 1780.
  • 9Mao P L,Aggarwal R K. A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network. IEEE Transactions on Power Delivery, 2001,16(4) :654~660.
  • 10Huang C M, Yang H T. Evolving wavelet-based networks for short-term load forecasting. IEE Proceedings-Generation, Transmission and Distribution,2001,148(3): 222-228.

同被引文献25

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部