期刊文献+

应用于语音识别片上系统的语音检测算法 被引量:3

A Speech Detection Algorithm for Speech Recognition Systems on Chip
下载PDF
导出
摘要 语音识别技术的研究已经进入实用化阶段,而实用化语音识别系统中的一个关键技术就是可靠的语音检测。本文提出了一种基于有限状态机模型的实时语音检测算法(FSM-SD)。采用对数最大似然判决帧能量检测器和过零率检测器控制各状态之间的跳转关系。针对语音识别中的MFCC(Mel频标倒谱系数)和LPCC(线性预测倒谱参数)特征提取过程,分别得到两种不同的帧能量计算方法。将FSM-SD应用到在OAK DSP上实现的小词表汉语语音识别系统,通过实验验证了其对系统识别性能和噪声稳健性的有效保证。 With the development of speech recognition, a robust speech detector has been the integral part of the practical speech recognition system. In this paper we propose a new finite state machine (FSM) based speech detection algorithm. The inputs of the FSM are derived from a zero-crossing detector and a LML (Logarithm Maximum Likelihood) frame-energy detector, where two kinds of noise robust energy are respectively used for MFCC and LPCC. Based on the proposed scheme, a small-vocabulary mandarin speech recognition system on OAK DSP can give real-time accurate speech recognition result. Experiments have been conduct to verify the viability of the proposed algorithm.
出处 《电路与系统学报》 CSCD 2003年第2期66-70,79,共6页 Journal of Circuits and Systems
基金 国家自然科学基金资助项目(60272016)
关键词 语音识别 OAK 语音检测 有限状态机 Speech Recognition OAK Speech Detection Finite State Machine
  • 相关文献

参考文献10

  • 1[1]Khaled, et al . Comparison of Voice Detection Algorithms for Wireless Personal Communications [A]. Proc. CCECE-97[C]. 470-473.
  • 2[2]ITU Recommendation. Annex A to G.723.1. Silence compression scheme for Dual speech coder for multimedia communications transmitting at 5.3 and 6.3 kbit/s [S]. 1996-11.
  • 3[3]ITU Recommendation. Annex B to G.729. A Silence Compression Scheme for G.729 Optimized for terminals Conforming to ITU-T V.70[S].
  • 4[4]Arnaud Martin, Delphine Charlet, Laurent Mauuary. Robust Speech/non-speech Detection Using LDA Applied to MFCC [A]. Proc. IEEE International Conference On Acoustics, Speech, and Signal Processing, 2001[C]. 237 -240.
  • 5[5]Francesco Beritelli, Salvatore Casale and Alfredo Cavallaro. A Robust Voice Activity Detector for Wireless Communications Using Soft Computing[J]. IEEE Journal On Selected Areas in Communications, 1998, 16(9): 1818-1829.
  • 6[6]Mauuary L, Monné J. Speech/non-speech Detection for Voice Response Systems[A]. Proc. Eurospeech-93 [C]. 1097-1100.
  • 7[7]Saul, L K, Rahim M G. Maximum Likelihood and Minimum Classification Error Factor Analysis for Automatic Speech Recognition [J]. IEEE Trans. On Speech and Audio Processing, 2000, 8(2): 115-125.
  • 8[8]Anthony LITTLE, Dr. Leon REZNIK. Speech Detection Method Analysis and Intelligent Structure Development [A]. Proc. 1996 Australian New Zealand Conf. On Intelligent Information Systems [C]. 1097-1100.
  • 9[9]XU Haiguo LI Husheng, LIU Jia, LIU Runsheng. Endpoint Detection Algorithm For Mandarin Digit Recognition Using DSP[A]. ICSP'02 2002 Beijing, CHINA[C].
  • 10[10]Lamel L, Rabiner R, Rosenberg J, Wilpon J. An Improved End-point Detector for Isolated Word Recognition [J]. Proc. IEEE ASSP Magazine, 1981: 777-785.

同被引文献18

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部