期刊文献+

修正的LupasBaskakov算子及导数的正逆定理 被引量:1

The Direct and Inverse Theorems of Modified LupasBaskakov Operators and the Derivatives
下载PDF
导出
摘要 利用Ditzian Totik光滑模ω2φλ(f,t)(0 λ 1)和K 泛函K2φλ(f,t2)之间的等价关系,讨论修正的Lupas Baskakov算子逼近的正逆定理,得到了逼近的等价结果,统一了点态(λ=1)和整体(λ=0)逼近等价定理;此外,研究了该算子导数与所逼近函数光滑性之间的关系,得到了其特征刻画定理. By using of the equivalent relation between the DitzianTotik modulus of smoothness ω2φλ(f,t)(0λ1) and the Kfunctional K2φλ(f,t2),both the direct and inverse approximation theorems of modified LupasBaskakov operators are discussed,and the equivalent results are obtained,which combine the pointwise(λ=1 )and global(λ=0 )approximation equivalent theorems.Furthermore,the relations between the derivatives of the LupasBaskakov operators and the smoothness of the approximated functions are studied, which characterize the theorems.
出处 《烟台大学学报(自然科学与工程版)》 CAS 2003年第2期89-93,共5页 Journal of Yantai University(Natural Science and Engineering Edition)
关键词 算子逼近 Lupas-Baskakov算子 点态逼近 DITZIAN-TOTIK光滑模 K-泛函 导数 正逆定理 LupasBaskakov operators pointwise approximation modulus of smoothness derivatives direct and inverse theorems
  • 相关文献

参考文献5

  • 1谢林森.Baskakov算子及导数的正逆定理[J].数学年刊(A辑),2000,1(3):253-260. 被引量:12
  • 2陈文忠.一般形式的Lupas-Baskakov积分算子[J].厦门大学学报:自然科学版,1988,27(3):254-260.
  • 3崔振录.广义Lupas-Baskakov积分算子[J].北方交通大学学报,1995,19(2):225-229. 被引量:4
  • 4Ditzian Z, Totik V. Moduli of Smoothness[M]. New York: Springer- Verlag, Berlin, 1987.
  • 5Helknann M. Direct and converse results for operators of Baskakov-Durrmeyer type[J]. Approx Theory and Its Appl,1989,5(1):105--127.

二级参考文献1

  • 1Zhou D X,J Approx Theory,1995年,81卷,303页

共引文献15

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部