摘要
利用Ditzian Totik光滑模ω2φλ(f,t)(0 λ 1)和K 泛函K2φλ(f,t2)之间的等价关系,讨论修正的Lupas Baskakov算子逼近的正逆定理,得到了逼近的等价结果,统一了点态(λ=1)和整体(λ=0)逼近等价定理;此外,研究了该算子导数与所逼近函数光滑性之间的关系,得到了其特征刻画定理.
By using of the equivalent relation between the DitzianTotik modulus of smoothness ω2φλ(f,t)(0λ1) and the Kfunctional K2φλ(f,t2),both the direct and inverse approximation theorems of modified LupasBaskakov operators are discussed,and the equivalent results are obtained,which combine the pointwise(λ=1 )and global(λ=0 )approximation equivalent theorems.Furthermore,the relations between the derivatives of the LupasBaskakov operators and the smoothness of the approximated functions are studied, which characterize the theorems.
出处
《烟台大学学报(自然科学与工程版)》
CAS
2003年第2期89-93,共5页
Journal of Yantai University(Natural Science and Engineering Edition)