期刊文献+

Q-正则Loewner空间中的拟对称映射 被引量:1

Quasisymmetric Maps in Q-Regular Loewner Spaces
原文传递
导出
摘要 本文在Q-正则Loewner空间中用环模不等式刻划了拟对称映射.另外,在 Q-维Ahlfors-David正则空间中建立了拟对称映射作用下的Grotzsch-Teichmuller型 模不等式,它是通过伸张系数的积分平均来表示. In this paper, we characterize the quasisymmetric maps by modulus inequalities of rings in Q-regular Loewner spaces. Furthermore, we establish the Grotzsch-Teichmuller type modulus inequality for quasisymmetric maps between Q-dimensional Ahlfors-David regular spaces, which is expressed in terms of the integral mean value of dilatation coefficients.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2003年第3期581-590,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10271077)
关键词 Loewner空间 Ahlfors-David正则空间 拟对称映射 伸张系数 POINCARÉ不等式 Loewner spaces Ahlfors-David regular spaces Quasisymmetric maps Di latation coefficients Poincare inequality
  • 相关文献

参考文献15

  • 1Heinonen J., Koskela P., Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 1998,181: 1-61.
  • 2Vaisala J., Lectures on n-dimensional quasiconformal mappings, Lect Notes in Math. Vol. 229, Berlin, New York: Springer-Verlag, 1971.
  • 3Bishop C., Gutlyanskii V., Martio 0., Vuorinen M., Conformal distortion in space, Preprint.
  • 4Lehto O., Virtanen K., Quasiconformal mappings in the plane, Second ed., Berlin: Springer-Verlag, 1973.
  • 5Telchmüller O., Untersuchungen tiber konforme und quasikonforme Abbildung, Deutsche Math., 1938, 3:621-678.
  • 6Wittich H., Zum Beweis eines Satzes ilber quasikonforme Abbildungen, Math. Zeitschr, 1948, 51: 275-288.
  • 7Bojarski B., General solutions of a system of differential equations of the first order and of eliiptic type with discontinuous coefficients, Math. Sb. NS, 1957, 43: 451-503.
  • 8Brakalova M., Jenkins J., On the local behavior of certain homeomorphisms, Kodai. Math. J., 1994, 17:201-213.
  • 9Iwanlec T., Regularity theorems for solutions of partial differential equations related to quasiregular mappings in several variables, Dissertationes Mathematicae, 1982, CXCVIII: 1-48.
  • 10Lehto O., On the differentiability of quasiconformal mappings with prescribed complex dilatation, Ann.Acad. Sci. Fenn. AI, 1960, 275: 1-28.

同被引文献18

  • 1Zoltán M. Balogh,Ilkka Holopainen,Jeremy T. Tyson.Singular solutions, homogeneous norms, and quasiconformal mappings in Carnot groups[J].Mathematische Annalen.2002(1)
  • 2Uha Heinonen,Pekka Koskela,Nageswari Shanmugalingam,Jeremy T. Tyson.Sobolev classes of Banach space-valued functions and quasiconformal mappings[J].Journal d’Analyse Mathématique.2001(1)
  • 3Juha Heinonen,Pekka Koskela.Quasiconformal maps in metric spaces with controlled geometry[J].Acta Mathematica.1998(1)
  • 4Juha Heinonen,Pekka Koskela.Definitions of quasiconformality[J].Inventiones Mathematicae.1995(1)
  • 5G. A. Margulis,G. D. Mostow.The differential of a quasi-conformal mapping of a Carnot-Caratheodory space[J].Geometric and Functional Analysis.1995(2)
  • 6Fang Ainong.On the representation theory of M?bius groups inR n*[J].Acta Mathematica Sinica.1993(3)
  • 7Jussi V?is?l?.Quasiconformal maps of cylindrical domains[J].Acta Mathematica.1989(1)
  • 8A. Korányi,H. M. Reimann.Quasiconformal mappings on the Heisenberg group[J].Inventiones Mathematicae.1985(2)
  • 9Vuorinen,M.Conformal Geometry and Quasiregular Mappings[].Lecture Notes in Mathematics.1988
  • 10Loewner,C.On the conformal capacity in spaces[].Journal of Mathematics and Mechanics.1959

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部