摘要
设R是结合环(可以没有单位元),(S,≤)是严格全序幺半群,序≤是Artin的且对任意s∈S,有0≤s,则对任意具有性质(F)的左R-模M,[MS,≤]是co-Hopf左[[RS,≤]]一模当且仅当M是co-Hopf左R-模.
Let R be an associative ring not necessarily possessing an identity, and (S, ≤) a strictly totally ordered monoid which is also artinian and satisfies that 0 ≤ s for any s ∈ S. Assume that M is a left .R-module having property (F). It is shown that M is a co-Hopfian left R-module if and only if [MS,≤] is a co-Hopfian left [[RS,≤]]-module.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2003年第3期493-496,共4页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(10171082)
高等学校优秀青年教师教学科研奖励计划资助项目
关键词
co-Hopf模
广义幂级数
广义逆多项式
Co-Hopfian module
Generalized power series
Generalized inverse polynomials