期刊文献+

广义逆多项式模的co-Hopf性质

Co-Hopfian Modules of Generalized Inverse Polynomials
原文传递
导出
摘要 设R是结合环(可以没有单位元),(S,≤)是严格全序幺半群,序≤是Artin的且对任意s∈S,有0≤s,则对任意具有性质(F)的左R-模M,[MS,≤]是co-Hopf左[[RS,≤]]一模当且仅当M是co-Hopf左R-模. Let R be an associative ring not necessarily possessing an identity, and (S, ≤) a strictly totally ordered monoid which is also artinian and satisfies that 0 ≤ s for any s ∈ S. Assume that M is a left .R-module having property (F). It is shown that M is a co-Hopfian left R-module if and only if [MS,≤] is a co-Hopfian left [[RS,≤]]-module.
作者 刘仲奎 樊元
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2003年第3期493-496,共4页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10171082) 高等学校优秀青年教师教学科研奖励计划资助项目
关键词 co-Hopf模 广义幂级数 广义逆多项式 Co-Hopfian module Generalized power series Generalized inverse polynomials
  • 相关文献

参考文献12

  • 1Varadarajan K., Hopfian and co-Hopfian objects, Publ. Mat., 1992, 38: 293-317.
  • 2Xue W. M, Hopfian modules and co-Hopfian modules, Comm. Alyebra, 1995, 23: 1219-1229.
  • 3Varadarajan K.: A generalization of Hillbert's basis theorem, Comm. Aigebra, 1982,10: 2191-2204.
  • 4Varadarajan K., A note on the Hopficitv of M[x] or M[[x]], Nat. Acad. Sci. Letters. 1992. 15: 53-56.
  • 5Tominaga H., On s-unital rings, Math.J.Okayama Univ.,1976, 18: 117-134.
  • 6Ribenboim P., Semisimple rings and yon Neumann regular rings of generalized power series, J. Algebra, 1997198: 327-338.
  • 7Liu Z. K., PF-rings of generalized power series, Bull. Austral Math. Soc., 1998, 57: 427--432.
  • 8Liu Z. K., Cheng H., Quasi-duality for the rings of generalized power series, Comm. Algebra, 2000, 28:1175-1188.
  • 9Ribenboim P., Noetherian rings of generalized power series, J. Pure. Appl. Algebra, 1992, 79: 293-312.
  • 10Ribenboim P., Rings of generalized power series Ⅱ: units End zero-divisors, J.Algebra, 1994, 168: 71--89.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部