摘要
本文以M-矩阵为工具,研究高维变系数线性偏微分方程组的Cauchy问题,得到该问题一致适定性与文不同的一系列显式代数判据(称为M-判别法).
The Cauchy problem of higher-dimensionar linear partial differential systems with variable coefficients is studied by taking M-matrix~[1] as a tool. A series of algebraic criteria (M-criteria) is obtained for the consistent suitability of the Cauchy problem, which are different from these reported in the references~[2-6].
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
1992年第5期15-21,共7页
Journal of Hunan University:Natural Sciences
基金
Supported by the National NSF of China
关键词
偏微分方程
一致适定
柯西问题
Cauchy problem
partial differential equations
parabolic equations/consistent suitability.