期刊文献+

基于预处理VAD和自适应KLT的语音增强算法 被引量:1

Adaptive KLT speech enhancement algorithm with preprocessing VAD
下载PDF
导出
摘要 针对加性有色噪声干扰,提出了一种单通道输入基于信号子空间的语音增强算法。算法中使用自适应的方法跟踪KLT(Karhunen-LoeveTransform)阵。运用一种近似模型来表述有色噪声的特性,并基于噪声平稳的假设,通过采用预处理技术的语音活动性检测(VAD:VoiceActivityDetection)单元获取噪声样本,用于下一语音帧中噪声特性的估计和增强处理。实验表明,算法对于有色噪声干扰下的语音信号有较好的增强效果,并且性能优于改进减谱法。 A kind of single input channel speech enhancement algorithm based on signal subspace is studied for enhancement of speech degraded by colored additi ve noise. An adaptive KLT(Karhunen-Loeve Transform)matrix is applied in the a l gorithm. The approximate model of colored noise is made. In the case of steady n oise, preprocessing VAD (Voice Activity Detection) algorithm is used to obtain noise sample. Then it is used to evaluate the character of noise and to accompl ish denoising processing. Simulation results show that this algorithm demonstrat es better performance than modified spectrum subtraction algorithm both in the e nvironment of white or colored noise.
出处 《吉林大学学报(信息科学版)》 CAS 2003年第2期117-122,共6页 Journal of Jilin University(Information Science Edition)
基金 吉林省高科技开发基金资助项目(20010316)
关键词 自适应变换 语音活动性检测 语音增强 Adaptive karhunen-loeve transform Voice activity detector Speech enhancement
  • 相关文献

参考文献10

  • 1Ephraim Y, Malah D, Juang B H. On the application of Hidden Markov Models for enhancing noisy speech [J]. ProeIEEE Trans ASSP, 1989, 37 (12) : 1 846--1 856.
  • 2Ephraim Yk A bayesian estimation approach for speech enhancement using hidden markov models [J]. IEEE Trans SP, 1992, 40 (4): 725--735.
  • 3Ssmeti H, Sheikhzadeh H, Deng L, et al. HMM-based strategies for enhancement of speech signals embedded in nonstationary noise [J]. IEEE Trans Speech Audio Processing, 1998, 6 (5): 445--455.
  • 4Lim J S, Oppenheim A V. All-pole modeling of degraded speech [J]. IEEE Trans on ASSP, 1978, 26 (3) : 197--210.
  • 5Boll S F. Suppression of acoustic noise in speech using spectral subtraction [J]. IEEE Trans Acoust, Speech, Signal,Processing, 1979, 27 (2): 113--120.
  • 6Mohammed Bahoura, Jean Rouat. Wavelet speech enhancement based on the teager energy operator I-J]. IEEE SignalProcessing Letters, 2001, 8 (1) : 10--12.
  • 7Yariv Ephraim, Harry L, Van Trees. A signal subspace approach for speech enhancement I-J]. IEEE Transaction on Speech and Audio Processing, 1995, 3 (4) : 251--266.
  • 8Afshin Rezayee, Saeed Gazor. An adaptive KLT approach for speech enhancement [J]. IEEE Transaction on Speech and Audio Processing, 2001, 9 (2): 87--94.
  • 9Bin Yang. Projection approximation subspace tracking [J]. IEEE Transactions on Signal Processing, 1995, 43 (1):95--107.
  • 10Yoon-Chang LEE, Sang-Sik AHN. An improved voice activity detection algorithm employing speech enhancement preprocessing [J]. IEICE Trans Fundamentals, 2001, E84-A (6): 1 401--1 405.

同被引文献9

  • 1GRIEDER W, KINSNER W. Speech Segmentation by Variance Fractal Dimension [J]. Electrical and Computer Engineering,1994, (2): 481-485.
  • 2CHEN LIANG, ZHANG XIONG-WEI. New Methods of Speech Segmentation and Enhancement Based on Fractal Dimension [J]. Signal Processing Proceedings, 2000, (1): 281-284.
  • 3OGATA S, SHIMAMURA T. Reinforced Spectral Subtraction Method to Enhance Speech Signal [ J ]. Electrical and Electronic Technology, 2001, ( 1 ): 242 -245.
  • 4PORUBA J. Speech Enhancement Based on Nonlinear Spectral Subtraction [ J ]. Devices, Circuits and Systems, 2002: T031-1- T031-4.
  • 5PANDEY P C, BHANDARKAR S M, BACHHER G K, et al. Enhancement of Alaryngeal Speech Using Spectral Subtraction [J]. Digital Signal Processing, 2002, (2): 591-594.
  • 6董远,胡光锐.语音识别的非线性方法[J].电路与系统学报,1998,3(1):52-58. 被引量:4
  • 7沈亚强.低信噪比语音信号端点检测和自适应滤波[J].电子测量与仪器学报,2001,15(1):27-32. 被引量:7
  • 8何凯,王树勋,戴逸松.基于Shannon熵的1/f类分形信号去噪方法[J].吉林大学学报(信息科学版),2003,21(1):21-26. 被引量:5
  • 9周旭,赵晓晖.变码率增强型双带激励LPC低速语音编码算法[J].吉林大学学报(信息科学版),2003,21(2):110-116. 被引量:1

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部