摘要
设X是任意Banach空间,T:X→X是Lipschitz增生算子,Sx=f-Tx, x∈X.在没有条件limαn=limβn=0之下,证明了具混合误差项的Ishikawa迭代程序是收敛的和几乎S 稳定的.相关地还得n→∞n→∞到了非线性强增生型算子方程Tx=f解的具混合误差项的Ishikawa迭代程序的收敛性和稳定性结果,所得结果改进和推广了近期的一些相关结果.
Let X be an arbitrary real Banach space, T:X→X be a Lipschitz accretive operator and Sx=f-Tx for all x∈X. Under the lack of the condition lim n→∞α n= lim n→∞β n=0, it is proved that certain Ishikawa iteration procedures with mixed errors are both convergent and almost S stable. Related results deal with the convergence and stability of the Ishikawa iteration procedures with mixed errors for iterative approximation of solutions of the nonlinear strongly aceretive operator equation Tx=f. Our results extend and improve some recent corresponding results.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
2003年第3期257-260,共4页
Journal of Sichuan Normal University(Natural Science)
基金
黑龙江省自然科学基金资助项目(A0211)
黑龙江省普通高等学校骨干教师创新能力资助计划项目
黑龙江省教育厅科研资助项目(10511132)