摘要
将普通区间估计的概念(x1,x2,…,xn)→[G1(x1,x2,…,xn),G2(x1,x2,…,xn)]拓广为广义区间估计的概念(x1,x2,…,xn)→{Aλ|Aλ∈ Θ,Aλ∩[G1(x1,x2,…,xn),G2(x1,x2,…,xn)]≠ }.于广义区间估计上建立了最优性概念,证明了广义区间估计与假设检验的最优性之间的关系,推演了一个重要区间估计的最优性.
In this paper, the ordinal interval estimation(x1,x2,…,xn)→[G1(x1,x2,…,xn),G2(x1,x2,…,xn)]is expanded to its generalized form(x1,x2,…,xn)→{Aλ|Aλ∈,Aλ∩[G1(x1,x2,…,xn),G2(x1,x2,…,xn)]≠}.The concept of most goodness for the generalized interval estimation is established. The relationship between generalized interval estimation and hypothesis testing is discussed. The most goodness of a sort of generalized interval estimation is deduced.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
2003年第3期264-267,共4页
Journal of Sichuan Normal University(Natural Science)
关键词
广义区间估计
真确度
虚假度
无偏
Generalized interval estimating
Reality
Falsity
Unbiased