期刊文献+

催化剂对碳纳米管产率及质量的影响 被引量:1

The Effect of Different Catalysts on the Quality and Yield of the Carbon Nanotubes Synthesized by Thermal Decomposition
下载PDF
导出
摘要 本文研究了添加钴/二茂铁、镍/二茂铁、钴、镍/钴不同催化剂对高温热解法制备碳纳米管质量、产率等的影响。高分辨率透射电镜图象显示在800℃左右,镍/二茂铁、钴/二茂铁和钴催化条件下,有多壁碳纳米管生成,而用镍/钴作催化剂时,只有直径在0 5μm左右,长度十几个微米的非晶态棒状物生成。通过对生成碳纳米管的质量和产量进行比较,催化剂的催化活性满足二茂铁>钴>镍。简单分析了在碳源高温热解环境下不同金属催化剂的性能差异,并对不同催化条件下生成物的拉曼光谱进行了分析。 The effect of cobalt/ferrocene, nickel/ferrocene, cobalt and nickel/cobalt catalysts on the quality and yield of carbon nanotubes produced by thermal decomposition has been studied. TEM images reveal that carbon nanotubes can be catalyzed by Ni/ferrocene, Co/ferrocene and Co under about 800℃, while nothing but amorphous carbon rods with 0.5 μm in diameter and more than 10 μm in length are generated when Ni/Co were used as catalysts. The catalysts affect the quality and yield of the carbon nanotubes in the order: ferrocene>Co>Ni. The difference of different catalysts on the growth of the carbon nanotubes by thermal decomposition is discussed and their Raman spectra are studied.
出处 《光散射学报》 2003年第1期42-47,共6页 The Journal of Light Scattering
基金 河南省高校创新人才基金资助项目 (批准号 :1 9999 1 2 5)
关键词 碳纳米管 产率 质量 催化剂 高温热解法 拉曼光谱 Carbon nanotubes Thermal decomposition Catalyst Growth mechanism TEM Raman Spectroscopy
  • 相关文献

参考文献21

二级参考文献35

  • 1[1]Bethune D S et al 1993 Nature 363 605
  • 2[2]Liang Feng et al 1999 Acta Phys. Sin. 48 1095(in Chinese)[梁风等 1999 物理学报 48 1095]
  • 3[3]Hamada N et al 1992 Phys. Rev. Lett. 68 1579
  • 4[4]Liu A Y et al 1989 Phys. Rev. B 39 1760
  • 5[5]Yu J et al 1999 Appl. Phys. Lett. 74 2984
  • 6[6]Blasé X et al 1997 Appl. Phys. Lett. 70 197
  • 7[7]Man X Y et al 2001 Acta Phys. Sin. 50 2023(in Chinese)[马锡英等 2001 物理学报 50 2023]
  • 8[8]Stephan O et al 1994 Science 266 1683
  • 9[9]Weng-Sieh Z et al 1995 Phys. Rev. B 51 11229
  • 10[10]Redlich P et al 1996 Chem. Phys. Lett. 260 465

共引文献40

同被引文献28

  • 1Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991,354:56.
  • 2Thess A, Lee R, Nikolaev P. et al. Crystalline ropes of metallic carbon nanotubes [ J ]. Science, 1996,273: 483.
  • 3Shi Z J, Lian Y F, Zhou X H. et al. Mass-production of single-wall carbon nanotubes by arc discharge method[J]. Carbon, 1999,37(9):1449.
  • 4Kinaret J M, Nord T, Viefers S. A carbon-nanotube-based nanorelay[J]. Appl. Phys. Lett.2003,82(8):1287.
  • 5Qian D, Dickey E C. [J] .Journal of Microscopy,2001,204(1) :39.
  • 6Liu C, Fan Y Y, Liu M, et al. Hydrogen storage in single-walled carbon nanotubes atroomtemperature[ J ]. Science, 1999,286:1127.
  • 7Xu D S, Guo G L, Gui L L, et al. [J] . Appl. Phys. Lett, 1999,75:481.
  • 8Pan Z W, Xie S S, Chang B H, et al. Direct growth of aligned open carbon nanotubes by chemical vapor deposition [ J ]. Chem. Phys.Lett, 1999,299:97.
  • 9Li W Z, Xie S S, Qian L X, et al. L arge-Scale Synthesis of Aligned Carbon Nanotubes [J]. Science, 1996,274:1701.
  • 10Cassel A M, Raymakers J A, Kong J, et al. [J].J. Phys. Chem.B, 1999,103: 6484.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部