期刊文献+

完全正矩阵的整数分解

Factorizations of Completely Positive Matrices over Integers
下载PDF
导出
摘要 n阶矩阵A称为完全正的,如果A有分解:A=BBT,其中B为元素非负矩阵,B的最小可能列数称为A的分解指数.本文考察低阶双非负矩阵在整数环上的完全正分解及其分解指数. An n×n matrix A is said to be completely positive if A can be factored as A = BBT, where B is an n×m nonnegative matrix. The smallest such number m is called the factorization index of A; A is called doubly nonnegative if it is entrywise nonnegative and positive semidefinite as well. The paper concerns completely positive factorizations of matrices (with integeral entries) in CP, over integers and the related factorization index.
作者 徐常青
机构地区 安徽大学数学系
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2003年第2期349-354,共6页 数学研究与评论(英文版)
基金 安徽省自然科学基金资助项目(010460101)
关键词 完全正矩阵 整数分解 分解指数 完全正分解 matrix completely positive factorization over integers factorization index
  • 相关文献

参考文献14

  • 1华罗庚.数论导引[M].北京:科学出版社,1979.11-12.
  • 2DIANANDA P H. On non -negative forms in real variables some or all of which are nonnegative [J].Proc. Cambridge. Philos. Soc. , 1962, 58: 17-25.
  • 3HALL M Jr. Combinatorial Theory [M]. Wiley, New York, 1986.
  • 4HALL M Jr, NEWMAN M. Copositive and completely positive quadratic forms [J]. Proc. Cambridge Philo. Soc. , 1963, 59: 329-339.
  • 5BERMAN A, HERSHKOWITZ D. Combinatorial results on completely positive matrices [J]. Lin. Algebra, Appl. , 1987, 95: 111-125.
  • 6GRAY L J, WILSON D G. Nonnegative factorization of positive semidefinite nonnegative matrices [J].Lin. Algebra, Appl. , 1980, 31: 119-127.
  • 7KOGAN N, BERMAN A. Characterization of completely positive graphs [J]. Discret. Math. , 1993,114: 297-304.
  • 8DEZA M. On harmonic geometry of unitary cubes [J]. Dokl. Akad. Nauk. , SSSR, 1960, 134(5),1037-1040. (in Russian).
  • 9DEZA M. Realization of matrices of distances in unitary cubes [J]. Problemy Kibernet, 1960, 145(7) :31 -42.
  • 10KO C. On the representation of a quadratic form as a sum of squares of linear forms [J]. Quart J.Math. , Oxford, 1937, 30(8): 81-98.

共引文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部