期刊文献+

L^2(R^n) Boundedness for a Class of Multilinear Singular Integral Operators 被引量:10

原文传递
导出
摘要 The L^2(A^n) boundedness for the multilinear singular integral operators defined by$T_A f\left( x \right) = \int_{Ropf^n } {{{\Omega \left( {x - y} \right)} \over {\left| {x - y} \right|^{n + 1} }}} \left( {A\left( x \right) - A\left( y \right) - \nabla A\left( y \right)\left( {x - y} \right)} \right)f\left( y \right)dy$is considered, whereQ is homogeneous of degree zero, integrable on the unit sphere and has vanishing moment of order one, A has derivatives of order one in BMO(A^n). A sufficient condition based on the Fourier transform estimate and implying the L^2(A^n) boundedness for the multilinear operator TA is given. The L^2(A^n) boundedness for the multilinear singular integral operators defined by$T_A f\left( x \right) = \int_{Ropf^n } {{{\Omega \left( {x - y} \right)} \over {\left| {x - y} \right|^{n + 1} }}} \left( {A\left( x \right) - A\left( y \right) - \nabla A\left( y \right)\left( {x - y} \right)} \right)f\left( y \right)dy$is considered, whereQ is homogeneous of degree zero, integrable on the unit sphere and has vanishing moment of order one, A has derivatives of order one in BMO(A^n). A sufficient condition based on the Fourier transform estimate and implying the L^2(A^n) boundedness for the multilinear operator TA is given.
作者 GuoEnHU
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2003年第2期397-404,共8页 数学学报(英文版)
  • 相关文献

同被引文献11

引证文献10

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部