期刊文献+

正交频率方的一个新构造(英文)

A new construction on mutually orthogonalfrequency squares
下载PDF
导出
摘要 设n=λm,频率方F(n;λ)是一个n×n方阵,它包含m个不同元,且满足任一元在每行每列中均出现λ次.若两个型为F(n;λ)的频率方在对应位置上的值组成的m2个不同序对,每个恰出现λ2次,则称这两个频率方正交.本文给出一个构造两两正交频率方的新方法,此方法是Street构造正交频率方方法的一个推广. Let n=λm.An F(n;λ) frequency square is an n×n array in which each of the m distinct symbols appears exactly λ times in each row and column.Two such squares are said to be orthogonal if upon superposition,each of the m2 distinct ordered pairs occurs exactly λ2 times.This paper is to give a new method of constructing MOFS.The technique is an extension of Street's theorem for MOFS.
作者 张彦
出处 《苏州大学学报(自然科学版)》 CAS 2003年第2期25-29,共5页 Journal of Soochow University(Natural Science Edition)
基金 NaturalScienceFundsofJiangsuEducationDepartmentBureau(0 0KJB110 0 3)
关键词 正交频率方 构造方法 横截设计 差矩阵 Street方法 组合数学 frequency square transversal design difference matrix
  • 相关文献

参考文献8

  • 1ANTHONY M H G,MARTIN K M, SEBERRY J, et al. Some Remarks on Authentication Systems[ J ].Lecture Notes in Mathematics, 1990, (453) : 122- 139.
  • 2BETH T,JUNGNICKEL D, LENZ H. Design Theory[ M]. Zurich: Bibliographisches Institute, 1985.
  • 3COLBOURN C J,DINITZ J H. The CRC Handbook of Combinatorial Designs[ M]. Boca Raton: CRC Press, 1996. 172- 178.
  • 4COLBOURN C J, DINITZ J H. The CRC Handbook of Combinatorial Designs[ M]. Boca Raton: CRC Press, 1996. 287 - 297.
  • 5STREET D J. Generalized Hadamard matrices, orthogonal arrays and F-squares[J ]. Ars Combinatoria,1979,8:131 - 141.
  • 6HEDAYAT A, RAGHAVARAO D, SEIDEN E. Further contributions to the theory of F-squarm designs[J ]. Ann Statist, 1975,3: 712 - 716.
  • 7HEDAYAT A, SLOANE N J A, STUFKEN J. Orthogonal Arrays: Theory and Applications[ M]. New York: Springer Verlag, 1999.
  • 8LAYWINE C F,MULLEN G L.A table of lower bounds of the number of mutually orthogonall frequency squares[ J ]. Ars Combinatoria, 2001,59 : 85 - 96.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部