期刊文献+

非线性损伤材料中Ⅲ型裂纹尖端场 被引量:2

Tip field of mode Ⅲ crack in nonlinear damage material
下载PDF
导出
摘要 为了研究损伤对裂纹尖端场的影响,在Krajcinovic一维脆性材料损伤模型的基础上,从宏观的唯象角度出发,采用连续损伤力学中的热力学内变量理论,推导出三维空间非线性损伤材料的本构方程,建立了一种非线性应变损伤模型,得出非线性损伤材料Ⅲ型裂纹尖端应力、应变和损伤场的解析表达式及其数值计算结果.经过分析得出损伤指数n和损伤变量D对裂尖场的影响较大,应力、应变为有限值,不具有奇异性,从而在理论上解释了实际材料在有限应力下破坏的现象,与工程实际相符. In order to investigate the influence of damage on cracktip field,constitutive equations have been derived with a nonlinear strain damage model established for 3D nonlinear damage material using the 1D Krajcinovie's damage evolution model for brittle material and the thermodynamic internal variable theory of continuous damage mechanics so that analytic expressions and their calculated numeric values are obtained for the tip stress,strain and damage fields of mode Ⅲ cracks in nonlinear damage material.Analyses indicate that damage exponent n and damage variable D have significant influence on carktip feld;stress and strain have limited values,and are not singular,thereby giving a theoretical explanation to the failure of material under limited stress in line with actual engineering practice.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 2003年第2期192-197,共6页 Journal of Harbin Engineering University
基金 黑龙江省自然科学基金资助项目(A00-09).
关键词 非线性损伤材料 Ⅲ型裂纹尖端场 损伤变量 nonlinear damage material near-tip crack for Mode Ⅲ crack damage variable
  • 相关文献

参考文献10

  • 1蔡艳红.非线性损伤材料中Ⅲ型裂纹尖端场[D].哈尔滨:哈尔滨工程大学,2002.
  • 2GRIFFITH A A. The phenomenon of rupture and flow in solids[ J ]. Philosophical Transactions of Royal Society,1920, A221 : 163 - 198.
  • 3IRWIN G R. Analysis of stresses and strains near the end of a crack traversing a plate [ J ]. Journal of Applied Mechanics, 1957, 24:361 - 364.
  • 4JANSON T. Dugdale crack in a material with continuous damage formation [J]. Eng Fract Mech, 1977, 9 : 891 -899.
  • 5YU S W, FAN X J. Temperature fields at crack tip in a damaging medium[J]. ZAMM, 1992, 72(4): 166 -169.
  • 6BUI H D ,EHRLACHER A. Propagation of damage in elastic and plastic solids [A]. Proc of 5th Int Conf Of Fracture[C]. Pergamon ,Oxford, 1981.
  • 7BUI H D, EHRLACHER A, RENARD C. The steady state propagation of a damaged zone of an elastic brittle solid[A]. Proc of 6th Int Conf Of Fracture[C]. Pergamon, Oxford, 1984.
  • 8POPELAR C H , HOAGLAND R G. On the nature of crack propagation and arrest in a damage material [ J ].Eng Fracture Mech, 1986, 23(1) : 131 - 144.
  • 9KRAJCINOVIC D. Distributed damage theory of beams in pure bending[J]. J Appl Mech, 1979,46:592 - 596.
  • 10LEMAITRE J A. Course on damage mechanics [ M ]. Berlin: Springer-Verlag, 1992.

同被引文献18

  • 1李朝弟,刘信声.考虑材料损伤时厚壁圆筒的承载能力[J].力学与实践,1993,15(1):23-23. 被引量:4
  • 2林政,陈云敏,陈仁朋.球形空腔固结解析解及其在地基原位固结系数测试中的应用[J].岩石力学与工程学报,2005,24(A02):5862-5867. 被引量:1
  • 3何涛,文鹤鸣.球形弹对金属靶板侵彻问题的数值模拟[J].爆炸与冲击,2006,26(5):456-461. 被引量:12
  • 4GAO X L. Two new expanding cavity models for indentation deformations of elastic strain-hardening materials [ J ]. International Journal of Solids and Structures, 2006, 43: 2193-2208.
  • 5DURBAN D, KUBI M. A general solution for the pressurized elastoplastic tube [ J]. J Appl Mech, 1992, 59: 20- 26.
  • 6SATAPATHY S. Dynamic spherical cavity expansion in brittle ceramics [J]. International Journal of Solids and Structures ,2001,38:5833-5845.
  • 7ROSENBERG Z, DEKEL E. ity expansion process and its A numerical study of the cavapplication to long-rod penetration mechanics [ J ]. International Journal of Impact Engineering,2008 (35) : 147-154.
  • 8LEMAITRE J, CHABOCHE J L. Mechanics of solid materials [ M ]. Cambridge: Cambridge University Press, 1988 : 23-45.
  • 9Lemaitre J. A Course on Damage Mechanics[M].Berlin: Springer-Verlag,1992.
  • 10Janson T. Dugdale-crack in a material with continuous damage formation[J]. Eng Fract Mech, 1977, 9:891 - 899.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部