期刊文献+

论L_ω敛散性的新定理

On the New Theorem of the Convergence and Divergence of L_ω
下载PDF
导出
摘要 本文论证了关于Jacobi矩阵B=L-U(L,U是非负阵)的逐次松弛矩阵的敛散性依赖于矩阵L+U。并给出了估计松弛矩阵之谱半径上下界的不等式。由此,还可证得对一般Jacobi矩阵B之松弛矩阵有:当|B|的谱半径小于1,则该松弛矩阵的谱半径小于1(这里松弛因子是在0和大于1的数C之间)。 For the successive relaxation matrix of Jacobi matrix B=L-U(L,U are nonegative matri- ces),this paper demonstrates that its convergence and divergence depend upon matrix L+U,and gives the inequalities for estimating upper and lower bounds of spectral radius in relaxation matrix.For the successive relaxation matrix of common Jacobi matrix B,this paper demonstrates that in case the spec- tral radius of |B| is less than 1,that of relaxation matrix will also be less than 1.Here the relaxation factor is in the range of 0 and C,a number greater than 1.
作者 陈恒新
出处 《华侨大学学报(自然科学版)》 CAS 1992年第2期164-169,共6页 Journal of Huaqiao University(Natural Science)
关键词 松弛矩阵 收敛性 发散性 relaxation matrix,convergence,divergence
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部