摘要
利用神经网络方法研究了受腐蚀钢筋混凝土梁极限承载力与各主要影响因素之间的复杂非线性关系,建立了承载力的神经网络预测模型,预测结果与试验结果吻合较好.研究结果表明神经网络计算是受腐蚀钢筋混凝土构件力学性能研究中一种很有潜力的新方法.
Artificial Neural Networks (ANNs) technology was applied to build the complex non-linear relationship between the load bearing capacity of the corroded reinforced concrete beam and the main factors. BP Neural Networks model was built to predict the strength of the corroded beam. Satisfactory results are achieved. Therefore, it is proven that the neurocomputing is a practical and promising tool for the research on mechanical properties of the corroded reinforced concrete member.
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
2003年第3期349-353,共5页
Journal of Dalian University of Technology
关键词
钢筋混凝土梁
极限承载力
神经网络
钢筋腐蚀
力学性能
预测模型
Backpropagation
Bearing capacity
Corrosion
Loads (forces)
Mechanical properties
Neural networks
Reinforced concrete